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Abstract 

Recently the authors proposed a new probability distribution called the Gumbel-Burr XII (GUBXII) distribution as a new 

member from the  𝑇 − 𝑋 family of distributions by adopting the logit transformation of the distribution function of the Burr XII 

random variable while using the Gumbel distribution as the generator. Several properties of the new distribution were studied by 

the authors and a simulation study was conducted to analyze the mean, median, standard deviation, skewness and kurtosis of the 

distribution. It was also demonstrated that the proposed distribution can be efficiently used in fitting data sets that are right-

skewed, left-skewed, unimodal, bimodal and exhibiting heavy-tail behavior. In this paper, we modeled extreme wind speeds of 

Benin City, Nigeria for a series of 200 weeks using the GUBXII distribution and compared the fit to that of the standard extreme 

value distributions namely: the Gumbel distribution and the Generalized Extreme Value (GEV) distribution. The maximum 

likelihood method was used to obtain the estimates of the parameters of the aforementioned distributions. Estimates of extreme 

wind speeds for given return periods were obtained for the three distributions and the delta method was used to construct 

approximate confidence interval for the given return periods estimates. Results obtained clearly showed that while the Gumbel 

distribution offered a good fit to the data, the proposed GUBXII distribution offered more flexibility for the data by possessing 

the smallest Akaike information criterion (AIC) value. Confidence interval for short return periods obtained for the extreme wind 

speed estimates using the GUBXII distribution was observed to be smaller than that of GEV and Gumbel distributions. 

Keywords and phrases: wind speeds; AIC; extreme values; maximum likelihood; return period; confidence interval and delta 

method. 

1. Introduction 

Extreme value analysis differs from other approaches of statistical analysis in its aim to quantify the stochastic behavior of a 

process at usually large or small levels. It is based on the analysis of maxima or minima of identically distributed sequences of 

random variables capturing a particular phenomenon over a given time period.Problems on extreme values appeared in the work 

of Nicholas Bernoulli back in 1709 for studying the problem of the mean largest distance from origin for 𝑛 random numbers on a 

straight line 1 . Extreme value theory has firstly been published in a comprehensive textbook by Emil Gumbel (1889-1966) in 

1958 where he presented and discussed three basic types of extreme value limit distribution which are type I (Gumbel), type II 

(Frechet) and type III (reverse Weibull) distributions 2 . The need to offer more flexibility to the standard classical extreme value 

distributions have spurred the development of new extreme value distributions either by adding extra parameter(s) to the standard 

distributions or by compounding the classical extreme value distributions with other well-known probability distributions. The 

GUBXII distribution is a consequence from the latter case realized by compounding the classical Gumbel distribution and the 

Burr XII distribution.  

In this paper, the performance of the GUBXII distribution in fitting and estimating extreme wind speeds is compared with 

that of the GEV and the Gumbel distributions. The analysis is based on  weekly highest wind speed observations collected over 

200 weeks between (2011-2015) in Benin City, South-South, Nigeria. This paper is organized in six sections. Section 2 covers a 

brief discussion on extreme value frequency analysis. In section 3 we look at the extreme value distributions used for the study, 

while in section 4, the maximum likelihood estimation of distribution parameters and construction of confidence interval for 

estimated extreme values are presented. Section 5 offers analysis and results, with discussion of results and conclusion in section 

6. 

2. Extreme ValuesFrequency Analysis 

In statistical extreme value analysis, one is interested in finding the distribution of a series containing the maxima or minima 

of a process over a well-defined time interval. Consider the relation  

𝑀𝑛 = 𝑚𝑎𝑥 𝑋1 ,𝑋2,… ,𝑋𝑛 , 

where𝑋1 ,𝑋2,… ,𝑋𝑛  is a sequence of independent and identically distributed variables. Each 𝑋𝑖  is measured at regular time 

interval say hourly, daily, weekly or yearly. The observations are usually assumed to come from an unknown distribution 𝐹 and 

hence the exact behavior of the sequence is usually difficult to obtain. Under certain regular and suitable conditions, the 

distribution of 𝑀𝑛  can be approximated for large values of𝑛. In particular, the extremal types theorem holds that if there exist a 

sequence of constants  𝑎𝑛 > 0   and   𝑏𝑛   such that 

                                    𝑃  𝑀𝑛 − 𝑏𝑛 𝑎𝑛 ≤ 𝑥  → 𝐹 𝑥           𝑎𝑠 𝑛 → ∞, 
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where𝐹 is a non-degenerate distribution function, then 𝐹 belongs to one of the extreme value distributions  3 . 

An extreme event is said to have occurred if the random variable 𝑋 with distribution function 𝐹, is greater than or equal 

to a particular threshold𝑥𝑇  i.e., if 𝑋 ≥ 𝑥𝑇 .  If the event 𝑋 ≥ 𝑥𝑇 occurred now, the time it will take for it to happen again is called 

the “Recurrence Interval”. The expected value of the recurrence intervalis the return period “𝑇” of the event  𝑋 ≥ 𝑥𝑇 . This is the 

average number of time (e.g., days, weeks, years) in which the event 𝑋 ≥ 𝑥𝑇 returns, which also describe the chance of 

occurrence of the event. The probability 𝜑 of the occurrence of the event 𝑋 ≥ 𝑥𝑇  is related to the return period 𝑇 by 

                                                                                            𝜑 = 𝑃 𝑋 ≥ 𝑥𝑇 =
1

𝑇
.                                                                                                 (1) 

Thus, the probability of occurrence of the extreme event 𝑋 ≥ 𝑥𝑇  is the inverse of the return period  𝑇.  Therefore the 𝑇 −duration 

return period event is 𝑋 ≥ 𝑥𝑇and it occurs on average once in 𝑇duration. From (1) it follows that the extreme value 𝑥𝑇  for a 

given return period 𝑇 can be obtained by solving the equation 

                                                                                              1 − 𝑇 1 − 𝐹 𝑥𝑇  = 0.                                                                                           (2) 

3. Extreme Values Distributions 

Here we consider three probability distributions, namely: the GEV distribution, Gumbel distribution and the GUBXII 

distribution. 

3.1. The GEV Distribution 

The probability density function (PDF) and cumulative distribution function (CDF) of the GEV distribution are given 

respectively as  

                                                   𝑓 𝑥 = −
 1 − 𝜁  𝑥 − 𝜇 𝛿  −1−1 𝜁 

𝛿
exp −  1 + 𝜁  −

𝑥 − 𝜇

𝛿
  

−1 𝜁 

 ,                                                    (3) 

𝐹 𝑥 =  exp −  1 + 𝜁  −
𝑥 − 𝜇

𝛿
  

−1 𝜁 

 ,                                                                                                      (4) 

where𝑥 is defined for 1 + 𝜁  𝑥 − 𝜇 𝛿 > 0 , −∞ < 𝜇 < ∞, −∞ < 𝜁 < ∞, 𝛿 > 0. The parameters 𝜁, 𝜇, and 𝛿 are shape, location 

and scale parameters respectively 1 . 

3.2. Gumbel distribution 

The Gumbel distribution arises as a limit distribution of the GEV distribution when the shape parameter 𝜁 → 0. Its PDF and 

CDF are given respectively as 

                                                 𝑓 𝑥 =
1

𝛿
exp −  

𝑥 − 𝜇

𝛿
 exp  −exp −  

𝑥 − 𝜇

𝛿
  ,                                                                                           (5) 

                                                𝐹 𝑥 = exp  −exp −  
𝑥 − 𝜇

𝛿
  ,                                                                                                                           (6) 

−∞ < 𝑥 < ∞, 𝛿 > 0,−∞ < 𝜇 < ∞, 

where the parameters 𝛿 and 𝜇 are scale and location parameters respectively  1 . 

3.3. Gumbel-Burr XII (GUBXII) distribution 

The GUBXII distribution is a member of the 𝑇 − 𝑋 families of distributions 4 . Its PDF and CDF are given respectively as 

                     𝑓 𝑥 =
𝜆𝑠𝑒𝜀 𝛼 

𝛼𝑐
 𝑥 𝑐  𝑠−1 1

+  𝑥 𝑐  𝑠 𝜆−1   1 +  𝑥 𝑐  𝑠 𝜆 − 1 
−1−1

𝛼 exp  −𝑒𝜀 𝛼   1 +  𝑥 𝑐  𝑠 𝜆 − 1 
−1

𝛼  ,        (7)  

                                                        𝐹 𝑥 

= exp  −𝑒𝜀 𝛼   1 +  𝑥 𝑐  𝑠 𝜆 − 1 
−1

𝛼  ,                                                                                     (8) 

                                                               𝑥 > 0,−∞ < 𝜀 < ∞,𝛼, 𝜆, 𝑠, 𝑐 > 0, 

where the parameters 𝜀,𝛼, 𝜆, and 𝑠 are shape parameters and 𝑐 a scale parameter 5 . 
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4. Maximum Likelihood Estimation and Construction of Confidence Interval for Extreme Values 

 Given the PDF 𝑓 𝑥;Θ  of a probability distribution, where Θis a vector of parameters, and a random independent sample of 

observations 𝑥1 , 𝑥2,… , 𝑥𝑛  of size 𝑛, the maximum likelihood estimate of Θ is obtained by maximizing the log-likelihood function  

                                                                                           ℓ =  ln 𝑓 𝑥𝑖 ;Θ  .

𝑛

𝑖=1

                                                                                                   (9) 

Suppose we let Θ  be the maximum likelihood estimate ofΘ, we can show under suitable regularity condition that Θis 

asymptotically normal. In some special cases, one may be interested in estimation of a function ofΘ. The Taylor’s formula comes 

handy in such situation because it holds that an estimate of a function say ℎ = ℎ Θ  is simply found byℎ Θ  . In particular, the 

return period 𝑇 can be viewed as a function giving us a tool to construct approximate confidence intervals for the 𝑇 −week return 

period extreme value 𝑥𝑇  since 𝑥𝑇is a function of the parameters of the extreme value distribution used for the analysis as shown 

in (2). This procedure is known as the delta method. It follows that the 1 − 𝛼 confidence interval for 𝑥𝑇  is given as 

                                                                                            𝑥𝑇 =  𝑥𝑇 ± 𝑍𝛼 2 𝜎  ,                                                                                                  (10) 

with variance 

                                                                                            𝑉 𝑥𝑇 = 𝛻𝑥𝑇 Θ 
𝑇𝑉𝛻𝑥𝑇 Θ ,                                                                                  (11) 

where𝑉 is the variance-covariance matrix evaluate at Θ , and  

                                                                                                𝛻𝑥𝑇 =  
𝜕𝑥𝑇
𝜕Θ

 .                                                                                                         (12) 

5. Analysis and Results 

Weekly Highest wind speed observations obtained from the recording station of the National Center for Energy and 

Environment (NCEE), Energy Commission of Nigeria (ECN) was used for the analysis. The maximum likelihood fit of the three 

distributions to the data is presented in Table 1. The density plot and Q-Q plots of the fitted distributions is given by Figure 1 (a-

d). Estimates of 𝑥𝑇  (in 𝑚/𝑠) using the three distributions for a given return period and the corresponding 95% confidence interval 

for 𝑥𝑇are contained in Table 2. 

Table 1: Maximum likelihood fits of weekly highest wind speeds (standard error of estimates in parenthesis) 

Distributions Parameter Estimates AIC 

GUBXII 𝛼 = 14.7493,  𝜀 = −2.0129,  𝜆 = 2.3143,  𝑠 = 25.5480, 𝑐 = 1.4122 
 1.2053  1.3194  0.3033  0.0032  0.0032  

381.4605 

GEV 𝛿 = 0.5069,  𝜁 = 0.0892,  𝜇 = 1.2258 
 0.0299  0.0479  0.0400  

383.2876 

Gumbel 𝛿 = 0.5264,  𝜇 = 1.2523,   
 0.0294  0.0391  

386.1084 
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Figure 1(a-d): Density and Q-Q plots of fitted distributions. 

Table 2: Extreme wind speed estimates (in 𝑚/𝑠) for given return periods and corresponding confidence interval 

                                                                 Return periods with 95% C.I 

𝑇 = 5  𝑥5       𝑇 = 20  𝑥20 𝑇 = 100  𝑥100           𝑇 = 200  𝑥200  

GUBXI   1.9843 1.8565,2.1121      2.8635  2.5240,3.2030        4.3001 3.5006,5.0996                5.1150  4.0133,6.2167 GEV        2.0393 1.8945,2.1841      2.9497  2.6377,3.2617        4.1088  3.4093,4.8083              4.6571  3.7130,5.6012  

Gumbel  2.0419 1.9104,2.1734      2.8158 2.6078,3.9719        3.6738  3.3757,3.9719               4.0400  3.7027,4.3773  

 

6. Discussion of Results and Conclusion 

Results from the analysis show that the proposed GUBXII distribution out-performed the Gumbel and GEV distribution in 

fitting the data. This is supported by the fact that the GUBXII distribution reported the lowest AIC value. The GUBXII 

distribution is also observed to fit the lower quantiles of the distribution better than the other distributions. This is validated by 

the Q-Q plot for the distribution and the small confidence interval offered by the GUBXII in estimating extreme wind speeds for 

small values of return periods. The Gumbel distribution also offered a good fit to the data with a shorter confidence interval for 

the upper quantiles. The GEV distribution, though also a good distribution for the data, seem to be the poorest in terms of its 

confidence interval for the estimated wind speed extremes and there are evidence that the extra shape parameter estimate that 

distinguishes the GEV distribution from the Gumbel distribution is statistically not significant and hence, the Gumbel distribution 

is more adequate or at best same as the GEV distribution for this data set. 

 In conclusion, adding extra parameter(s) to a univariate distribution or compounding two or more univariate 

distributions to aid flexibility can be very useful in such practical application like statistical modeling of environmental variables 

and this is what we have realized by using the GUBXII distribution in this study. 
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Abstract -- Cloud computing is offering utility-oriented IT services to users worldwide, based on pay-for-
use. The ever-increasing demand for cloud services results in large electricity costs to cloud providers and 
causes significant impact on the environment due to CO2 emissions. There is many works focused on 
improving the energy efficiency of servers. Existing solutions seams to address the issue mostly in one side. 
Therefore there is a need to implement solution that really improves the efficiency of both Energy and 
Carbon in cloud environment. In this paper we study main solution axis, and trying to unveil their 
strength and weaknesses.   
Keywords:  Cloud Computing; Virtualization; Energy and Carbon-Efficiency  
Résumé -- Le Cloud computing consiste à offrir des services informatiques utilitaires orientés utilisateurs 
à travers Internet, sur la base du payement à l'emploi. La demande sans cesse croissante des services de 
cloud computing a pour les résultats des grands coûts de facture en électricité provoquant un impact 
significatif sur l'environnement en raison des émissions de CO2. Il y’a beaucoup de travaux portant sur 
l’optimisation de la consommation en énergétique des serveurs. Les solutions existantes semblent traiter le 
problème en se basant sur un seul aspect. Par conséquent, il est nécessaire de mettre en œuvre une 
solution qui améliore vraiment l'économie de l'énergie tout en réduisant conséquemment les émissions de 
carbone dans les environnements de cloud. Dans cet article, nous étudions les principaux axes de la 
solution, et en essayant de dévoiler leur force et leur faiblesse. 
Mots clés: Cloud Computing; Virtualisation; Econergétique 
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Abstract 

In this paper, we proposed a two-parameter Akash distribution and some of its Mathematical 

properties such  the survival function, hazard rate function, mean residual life function, 

moments,  moment generating function, Renyi entropy and stochastic ordering are obtained. The 

Maximum likelihood method was employed in estimating the parameters of the proposed 

distribution. Finally, we applied the proposed distribution to two real lifetime data sets and the 

results are compared with some existing related lifetime distributions such as the Lindley 

distribution, Akash distribution and the two-parameter Lindley distribution. Our finding was that 

the proposed two-parameter Akash distribution was superior to the rest distributions in terms of 

certain information criteria, Kolmogorov-Smirnov test statistic, P-P Plot and the estimated 

density for each data set. 

Keywords: Akash distribution; Lindley Distribution; Hazard rate; Renyi entropy; Moments;  

                  Stochastic ordering. 

 

1 Introduction 

The Lindley distribution was introduced by Lindley (1958). This distribution which is a mixture 

of exponential distribution and a special gamma distribution have received considerable attention 

and have also attracted a wide range of applicability in the area of medicine, engineering, 

insurance, finance and many others.  Ghitany et al. (2008) studied the properties of the Lindley 

distribution and highlighted its usefulness. Zakerzadeh and Dalati (2010) introduced the 

generalised Lindley distribution and showed its superiority over the popular Gamma, Weibull 

and Lognormal models. Ghitany et al. (2011) also proposed a two-parameter weighted Lindley 

distribution and pointed out that it is useful for modelling mortality data. Ghitany et al. (2013) 

introduced the Power Lindley distribution model, Shankar et al. (2013) proposed a Two-

Parameter Lindley distribution showing its application in the waiting and survival data. 

Warahena-Liyanage and Pararai (2014) introduced a generalized power Lindley distribution 

model. Ghitany et al. (2015) presented estimation of the reliability of a stress-strength system 

from power Lindley. Bhati et al. (2015) presented the Lindley-Exponential distribution model 

with applications to biological data. Pararai et al. (2015) introduced a new class of generalized 

power Lindley distribution with application to different set of lifetime data. Variant of this 

distribution called Akash distribution was proposed by Shanker (2015). The mathematical 

properties of the one-parameter Akash distribution appear to be more flexible than the Lindley 

distribution and the Exponential distribution. In spite of the flexibility of Akash distribution over 

Lindley and Exponential distribution in modeling real lifetime data, there are situations where 

the Akash distribution may not give a better fit.  The purpose of this paper therefore, is to 

propose a new two-parameter lifetime distribution which appears to be a generalised form of the 

one-parameter Akash distribution. This new distribution is what we shall call “A Two-Parameter 

Akash Distribution” 
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The one-parameter Akash distribution which was proposed by Shanker (2015) has its probability 

density function (pdf) given by: 
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This distribution is a mixture of an exponential (λ) and gamma(3, λ) distributions with  mixing 
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respectively. 

The corresponding cumulative distribution function (CDF) of (1.1) is given by: 
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Then, the proposed two-parameter Akash distribution (TPAD) with parameter ( , ) is given by: 
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The pdf in equation (1.3) is also a mixture of Exponential (λ) and Gamma (3, λ) distributions but 

with mixing proportions 
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The corresponding CDF of the TPAD  is given by: 
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2 Materials and Methods 

Some properties of the TPAD which includes the survival function (s(x)), hazard function (h(x)), 

mean residual life function (m(x)) are obtained. We summarize these properties in Table1. The r
th

 

raw moments, the k
th

 central moments and maximum likelihood estimate of the parameters are 

obtained. The first four moments, variance, coefficient of variation (CV), coefficient of skewness 

( kS ) and coefficient of kurtosis ( sK ) for the four distributions are summarised in Table 2. 

Table 1: Summary results of the s(x), h(x) and m(x) for the TPAD 
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Table 2: Summary Statistics of the first four moments, variance, coefficient of Skewness and 

coefficient of Kurtosis of the Lindley, TPLD, Akash and TPAD  
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3 Application 

The following data was fitted to the four distributions and the statistics of the results are 

presented in Table 3. Data 1: represents the relief times of twenty patients receiving an 

analgesic. This data set was taken from Gross and Clark (1975). Data 2: represents the survival 

times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, reported by Bjerkedal 

(1960).. 

Table 3: Summary Statistic of Results obtained from Data 1 and Data 2 

              Model     parameter estimate            -2lnL              AIC             BIC               K-S statistic 

Data1     Lindley    8161.0                         4992.60           4991.62         4948.63              3911.0  

               TPLD 11953240,0527.1            3264.52           3264.56        3178.58               3221.0     

               Akash  1569.1                             5226.59           5226.61        5183.62              3705.0  
               TPAD  106289,5788.1  

           

7748.45           7749.49        7663.51              2525.0  

Data2      Lindley 8682.0                           857.213            8569.215      1336.218              2467.0  

               TPLD    938567,1310.1  

        

0482.195           0482.199       6016.203             1680.0  

               Akash    2159.1                           6776.214           6777.216      9543.218             2345.0  

               TPAD    9127.84,6781.1  

      

 0386.188            0386.192       592.196               1007.0  
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4 Concluding Remark 

In this paper, a new two parameter lifetime distribution called the Two-Parameter Akash 

distribution is introduced and the mathematical properties such as the shape of the density, 

Hazard rate function, Mean residual life function, Moment generating function, Moments, 

Skewness, Kurtosis measures, Renyi entropy and Stochastic ordering have been discussed. The 

Maximum likelihood method was employed in estimation of its parameters. The application of 

the proposed distribution to two real data sets (Biological data and Engineering data) alongside 

with Lindley distribution, Two-Parameter Lindley distribution and Akash distribution, reveals 

that the proposed distribution fits the two sets of data better than others. 
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A NEW LIKELIHOOD METHOD FOR THREE-PARAMETER
WEIBULL DISTRIBUTION FITTING

Abstract. This paper deals with a Maximum likelihood method to fit a three-parameter

weibull distribution to data from an independent and identically distributed scheme of

sampling. The likelihood hinges on the joint distribution of the n − 1 largest order

statistics and its maximization is done by resorting to a MM-algorithm. Monte Carlo

simulations is performed in order to examine the behavior of the bias and the root mean

square error of the proposed estimator. The performances of our method is compared

to those of two alternatives methods.

1. Introduction

Numerical datasets with skewed empirical distribution appear in many fields such as

ingineering(materials fatigue testing and component reliability), business (human and

business failures), forestry, hydrology and biology[13]. Most of the time, these datasets

made of recorded values that cannot fail below a threshold. The three-parameter

weibull model of probability distributions is one of the statistical model appropriate for

statistical analysis of such dataset. A probability distribution that obeys to the three-

parameter weibull model is identified by a vector of three real parameters θ = (λ, β, ν)

and is defined by a probability density function(pdf) f (with respect to the Lebesgue’s

measure) as follows:

f (x|θ) =
λ

β

(
x− ν
β

)λ−1
exp

{
−
(
x− ν
β

)λ}

where the parameter ν ∈ R denotes the threshold value and is called the location param-

eter; β > 0 is the scale parameter and λ > 0 is the shape parameter.

If 0 < λ ≤ 1, the distribution is reverse “J” shaped, whereas if λ > 1, the distribution is

bell-shaped and its mode is equal to ν + β (λ− 1)
1
λ .

2. Problems related to the use of the maximum likelihood estimation

method

The support of a weibull distribution is limited on the left by the threshold parameter

ν. If the value of the threshold ν is unknown, the statistical model that one deals with

is no more regular and several undesirable situations can then arise when the maximum

likelihood method is used to fit the model to data. First, note that the likelihood is

unbounded for values of the shape parameter λ smaller than 1 as ν goes towards the

observed sample minimum value x1:n. Another problems encountered by the use of the
1
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complete maximum likelihood method are the non-existence of a global optimum of the

log-likelihood in a certain range of the parameters’ values, convergence problems and

large variability of the parameters’ estimates.

3. An overview of methods available for the model parameter

estimation

The non-regular behavior of the maximum likelihood method for the weibull model has

been addressed from theoretical statistics point of view in several works including:

Harter and Moore(1965)[6], Cheng and Iles (1987, 1990)[3, 2], Smith (1985) [12]and Cohen

and Whitten (1982)[4]. They have aimed also to provide reliable estimates of θ for the

three-parameter weibull distribution.

Others works including [5, 10] of Hall and Wang (2005) , and Nagatsuka and al. (2013),

have developed methods that aim to provide with reliable estimators as those based on

complete and censored samples and order statistics.

In this work, we develop a new estimation method using the likelihood based on the n−1

largest values of a sample of size n from a three-parameter weibull distribution. We pro-

vide an MM algorithm (Lange (2000),[8]) to determine Maximum Likelihood Estimates

(MLEs) of θ. The performance of the methodology developed is assessed by a simulation

study and illustrated

4. The method:Using censored data based likelihood for a reliable

estimation of model’s parameters

4.1. The log-likelihood function. Let:(xi)i=1:n denote a sample of size n from a three-

parameter weibull distribution with unknown parameters vector θ

and (xi:n)i=1:n, the sequence of the non-decreasing sorted values.

We consider the order statistics based likelihood function as follows:

L(θ|xi:n,i = 2 : n) = n!F (x2:n | θ)
n∏

i=2

f (xi:n | θ)

where

F (x | θ) =

ˆ x

ν

f (u | θ) du

= 1− exp

{
−
(
x− ν
β

)λ}

Taking the logarithm of both sides leads to the following order statistic based log-

likelihood function l (θ|x2:n, ..., xn:n)
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l (θ | x2:n, · · · ,xn:n) = log (n!) + (n− 1) log

(
λ

β

)
− (n− 1) (λ− 1) log (β)

+λ
n∑

r=2

log (xr:n − ν)−
n∑

r=2

log (xr:n − ν)

− 1

βλ

n∑

r=2

(xr:n − ν)λ + log

{
1− exp

{
−
(
x2:n − ν

β

)λ}}

4.2. Maximization of the likelihood. Although the likelihood function considered

above is based on left censored data, its maximization will take account of the totality

of the data through constraints on the model’s parameters. Therefore the model’s fitting

will rely on the totality of the information available in the dataset. The likelihood will

be maximized by using a mm-algorithm.

4.3. A glance on the MM-algorithms. The acronym MM stands for Majorization-

Minorization or Minorization-Maximization algorithm. The aim of a MM-algorithm is

to convert a hard optimization problem into a sequence of simpler ones. Lange ((2000),

(2004), (2013) ,[8, 7, 9]). We focus hereafter on Minorization-Maximization version of

the MM approach to computing the argument value where an objective function reaches

a local maximum or a stationary point.

One challenge is to be able to build a minorization function Q that is easy to deal with.The

surrogate function for minorization is chosen by resorting to inequalities of mathemat-

ical analysis as Arithmetic or Geometric Mean inequality, Cauchy-Schwarz inequality,

Jensen’s inequality, minimization via supporting hyperplane, etc.

4.4. Outlines of the derivation of our MM-algorithm.

l (θ|x2:n, ..., xn:n) ≥ log (n!) +Q (θ|θ′, (xr:n)r=1:n) + κ (θ′|xi, i = 1 : n)

where

Q (θ|θ′, (xr:n)r=1:n) = Q1 (λ|θ′, (xr:n)r=1:n) +Q2 (ν|θ′, (xr:n)r=1:n) +Q3 (β|θ′, , (xr:n)r=1:n)

One of the interesting property of the minorization function Q obtained after the mi-

norizing step of the MM algorithm is that the components of the model parameter are

separated. Indeed, the Q-function reduces to the sum of three real-valued functions taking

the real-valued arguments λ, β and ν as shown in the precedent equations . Optimisation

of the Q-function is then reduces to optimisation of th three univariate functions one by

one at each iteration of the MM algorithm.

13 sciencesconf.org:sada2016:118695



A NEW LIKELIHOOD METHOD FOR THREE-PARAMETER WEIBULL DISTRIBUTION FITTING 4

Moreover, if ∇Q (θ|θ′) denotes the gradient vector of the function θ → Q (θ|θ′), one has

∇Q (θ|θ′) = ∇l (θ|θ′)and we show that the function θ → Q (θ|θ′) is concave and thus

admits a unique global maximum for any θ fixed.

5. Simulation study

A simulation study has been carried out to evaluate the performance of the estimators

of the proposed method. These simulations was run by considering the same configura-

tions of the three-parameter weibull model of probability distribution as Nagatsuka & al.

(2013)[10], by selecting the following values of the shape parameter λ : 0.5, 1.0, 2.0, 3.0,

and4.0 when the location and the scale parameters are taken fixed as ν = 0 and β = 1.

The performance of the estimators is evaluated through the bias and root-mean-squared

error (RMSE). In addition, as in the paper by Nagatsuka & al. (2013),[10], we compute

joint bias of the three parameters as well as there joint mean squared error in order to

evaluate the marginal performance on mean squared error (MSE) of the estimators of the

three parameters. The joint bias is sum of the absolute values of the bias and the joint

MSE is the trace of the MSE matrix of the estimators.

All computations were carried out with R computing environment (R Core Team , (2015),

[11]) and the data were generated by the use of the package PearsonDS (Becker and al.

(2013), [1]).
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ABSTRACT 

Background: 

Survival cure models are widely used in public health researches to analyze time-to-event 

data in which some subjects would never experience the event of interest; these subjects 

are said to be statistically cured. There are two types of cure models, the mixture cure model 

and the non-mixture cure modelwhich were first formulated respectively by Boag(1949) [1] 

and Yakovlev et al. (1993) [2]. These models have been intensively developed [3,4 among 

others]and have also been extended to the net survival framework [5-7 for instance].In 

cancer survival analysis, net survival is a measure of survivalinthe hypothetical world where 

cancer would be the only possible cause of death[8,9]. 

In France where three million people live with a personal history of cancer and undergo very 

serious difficulties in accessing insurance and credit, the parliament voted in December 

2015, the “Loi santé” setting the time after which insurance must be surtax-free to 10 years 

after the end of cancer treatment. It is necessary to set the time to surtax-free insurance 

specifically for each cancer site using statistical evidence. Cure models combined with cancer 

registries data seem the best tools to overcome this challenge by estimating i) the 
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proportion of the subjects who are no longer at risk to die from their cancer i.e. the subjects 

without additional risk of death due to cancer (cured subjects) ii) the time from which 

subjects can be supposed to be cured (thus the timeto surtax-free insurance). 

Methods:  

The principles underlying the formulation of both the mixture and the non-mixture cure 

models were recalled and a brief review of the two types of models was provided. The 

extension of cure models to the net survival framework was exposed and the flexible non-

mixture cure model based on net survival and developed by Andersson et al. (2011) was 

described. The later model was fitted to melanoma, colorectal and liver cancers data from 

the French cancer registries network. The data included all patientsdiagnosed between 1989 

and 2010, aged between 15 and 74 at diagnosis and followed-up on June 31, 2013 for vital 

status.Cure timeT was defined as the time when 90% of deaths due to cancer had occurred.T 

corresponded to the time at which the net survival reached a plateau at a non-zero value 

defined as the cure proportion P.T was referred to as the time from diagnosis to surtax-free 

insurance. 

Results: 

For melanoma, net survival reached a plateau at a cure proportion P of 88% for women and 

82% for men. Cure times T were respectively 11.5 and 8.0 years after diagnosis.  

For colorectal cancer P was 57% for women and 51% for men, corresponding T were 7.5 and 

8.4 years. T varied according to age, ranging from 7.3 years to 7.8 years for women and 8.2 

to 8.6 years for men.  

For liver cancer, P varied according to age from 6 to 21% for women and 6 to 11% for men. T 

ranged from 3.4 to 5.1 years for women and 4.2 to 5.0 years for men.  

Conclusions: 

Cure models are useful tools to improve access to insurance and credit by allowing time to 

surtax free to rest on statistical evidence, and to be adjusted according to cure time. 

Cure time varied with cancer site, age and sex. It was lower than 10 years in various cases. 

Time to surtax free insurance should be reassessed for each site according to newly 

estimated time to cure.  
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However the cure time as defined and estimated when using cure models is not entirely 

satisfactory and is subject to criticism. Further workson cure models are then needed to 

improve the estimation of the cure time. 

Key words: 

Cure rate models; survival analysis; net survival; cancer; cancer registries. 
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1 Introduction

We consider the “species richness” problem, also known as the problem of estimating the number
of species, which arises when a sample of individuals is taken from a population with N classes
or species. The usual dataset is a series of observed counts X+

1 , . . . , X
+
D , with D ≤ N being the

total number of distinct species observed in the sample and N is the parameter to be estimated.
Estimating N using such abundance data is an old problem that has been tackled in several
ways, both by parametric models, including Bayesian models ([2, 1]), and by nonparametric
models [9]. Due to their flexibility to account for heterogeneity, the nonparametric approaches
are those predominantly considered in the last two decades. This setting contains among others
the Chao-type estimators developed by Chao and collaborators (see for examples [5, 3, 4]), and
the likelihood-based nonparametric estimators of which one can cite [7]. But the nonparametric
estimators often cause instability and the authors prefer to truncate the data into rare species
data (X+

i ≤ τ) and abundant species data (X+
i > τ) with τ being the truncation threshold.

We introduce a semi-parametric model for the abundance distribution and propose a pro-
cedure to estimate N using this model. This model incorporates the threshold τ for which a
heuristic based on Goldenshluger and Lepski’s method [6] is used to define a selection rule. We
illustrate all these through a numerical experiment.

2 Model and Estimator

2.1 The Model

Assume that the abundance follows a distribution f that belongs to a model P defined for α > 0
by

P =
{
f(θ,q,F )(x) = qRθ(x) + (1− q)F (x)

}
(1)

with q ∈ [α, 1[, θ ∈ Θ (a compact subset of Rk, k ∈ N\{0}) and F ∈ Fτ , where Fτ (τ ∈ N\{0}) is
a family of discrete distributions supported on {τ+1, τ+2, ...}, and Rθ a parametric distribution.
This amounts to assume that F (x) = 0 for all x ≤ τ and F (x) ≥ 0 for all x greater than τ.
The model P characterizes two sub classes of species: the sub class of rare species described
by the parametric density Rθ, and the sub class of abundant species described by the density
F which can be considered as a nuisance distribution in the estimation of the unobserved part
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of the rare species. As the unseen species do not appear in a sample, a data set in abundance-
based estimation of the number of species contains only non-zero abundances generated by a
zero-truncated density. We then consider the zero-truncated version of P :

P+ =

{
f+(θ,q,F )(x) =

f(θ,q,F )(x)

1− qRθ(0)
, f(q,θ,F ) ∈ P

}
, (2)

from which the abundances X+
1 , . . . , X

+
D will be observed.

2.2 The estimator

To estimate the parameters in the model P+, we consider the full likelihood function which is
the product of two likelihood Lb and L+ defined respectively by

Lb(N/D, θ, q) =
N !

D!(N −D)!
[qRθ(0)]

(N−D)
[1− qRθ(0)]

D
(3)

and

L+((f̂x)x≥1, θ, q, F ) =
D!

∏
x≥1 f̂x!

∏

x≥1

[
qRθ(x) + (1− q)F (x)

1− qRθ(0)

]f̂x
, (4)

with f̂x =
∑D
i=1 1[X+

i =x], x ≥ 1, being the frequencies of observed counts.

We derive a maximum likelihood estimator (MLE) of N by maximizing first the likelihood
L+ to obtain the estimators of q, θ and of the nuisance distribution F, and then maximize the
binomial likelihood in the parameter N given that q and θ are known. This method is known
as the conditional maximum likelihood method for estimating the parameter N. Some reference
works on this kind of MLE include [8]. The conditional MLE leads to a pseudo-estimator of F
at each support point x defined by

F̂(θ,q)(x) =
[1− q∑τ

k=0Rθ(k)]

(1− q)(D −Dτ )
f̂x −

q

1− qRθ(x), (5)

where Dτ denotes the number of species with abundance located between 1 and τ. But F̂(θ,q)

puts negative mass at some of its support points as it is not constrained to be nonnegative at
each point. This occurs for example at a support point x such that f̂x = 0. Clearly, it is not
admissible for a probability mass function but it has a remarkable asymptotic property of almost
sure convergence to the true mass function F at each point of its support. Replacing F by its
pseudo-estimator in L+ leads to an objective function for q and θ which is maximized in q to
derive the MLE of q as a function of θ given by

q̂(θ) =
1

Rθ(0) + D
Dτ

∑τ
k=1Rθ(k)

.

The next step is to find a proper estimator of θ and to obtain an estimator of q from the above
formula. To allow an easier reading of the following, we fix some additional notations and define
other tools that will be used. Suppose that the true distribution f+ belongs to the model P+

and that there exists a true threshold of truncation, say τ0. For a fixed τ, let

Sτθ (x) =
Rθ(x)∑τ
k=1Rθ(k)

for 1 ≤ x ≤ τ, (6)
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andMτ (θ) =
∑τ
x=1 f

+(x) log {Sτθ (x)} .We assume that the density Rθ is such that the parameter

θ is identifiable in the model with density Sτθ . Define now θ̂ as the MLE of θ in the model with

density Sτθ based on the frequencies f̂x, x = 1, . . . , τ. This estimator θ̂ maximizes the likelihood
∏τ
x=1 {Sτθ (x)}f̂x . The corresponding estimator of q is q̂ = q̂(θ̂). The above likelihood is obtained

from the conditional likelihood L+ by replacing F and q by their estimators respectively. The
estimators θ̂ and q̂ of θ and q respectively are M-estimators for which one may prove consistency.

2.3 Main results

We begin with a consistency result stated below. In this result, Θτ denotes the set of maximizer
of Mτ over Θ.

Theorem 1. Assume that Rθ is identifiable and that for all x in {1, . . . , τ}, θ 7→ Rθ(x) is a
continuous function such that Rθ(x) > δ (δ > 0) for all θ in Θ. Then as N tends to infinity, the
following results hold:

(i) If τ ≤ τ0, then θ̂ and q̂ converge in probability to θ0 and q0 respectively;

(ii) If τ > τ0, then θ̂ converges in probability to Θτ .

Theorem 1 provides some properties of estimators θ̂ and q̂, the corresponding estimator of
the total number of species depends on the threshold τ, the number of observed species D and
the abundances of rare species (X+

i ≤ τ). As q̂ and θ̂ depend on τ, we denote them by q̂τ and θ̂τ
respectively. We define the estimator of N as the integer that maximizes the binomial likelihood
Lb. Approximately,

N̂τ =
D

1− q̂τRθ̂τ (0)
. (7)

This estimator differs from the traditional conditional MLE from the literature that we will
denote by N̂c. In a truncation framework, the latter is commonly computed as the integer part
of Da +Dτ/(1−Rθ̂(0)) (with Da = D−Dτ ). Note however that, there exists a condition under
which both estimators are equivalent.

Proposition 1. For a fixed τ such that τ ≤ τ0, if Rθ is supported only on {0, . . . , τ}, then the

two estimators N̂τ and N̂c are equivalent.

Proposition 1 means that if the densities Rθ and F are supported on disjoint sets, then one
can split the abundance data set into rare species data (X+

i ≤ τ) and abundant species data
(X+

i > τ). In this context, inference on rare species is not affected by the estimation of the
nuisance distribution F and thus throwing away high abundance data is justified.

We return to Theorem 1 to highlight its importance in that it states the requirement to
choose τ less than or equal to its true value τ0. If one chooses τ greater than τ0, the proposed
estimators could not be consistent. This choice is then a new challenge that could be addressed
in a model selection framework.

2.4 Choice of τ

We present here a heuristic based on Goldenshluger and Lepski’s method to provide a selection
rule for τ. Let T = {τmin, ..., τmax} with τmin > 2 and τmax being a finite integer; consider

the collection F(T ) = {N̂τ ; τ ∈ T} of conditional MLE, with N̂τ given by equation (7). The
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following selection rule allows to choose τ̂ that minimizes a proxy of the risk over F(T ) using the
bias-variance decomposition of the mean square error. The selection rule is

τ̂ = arg min
τ∈T
{B(τ) + pen(τ)} ; (8)

with B(τ) = maxτ ′≤τ

{
(N̂τ ′ − N̂τ )2 − pen(τ

′
)
}
+

a proxy of bias on N̂τ , and pen(τ) a proxy of

variance possibly obtained via bootstrap.

3 A numerical experiment

Design. We considere the distribution qPθ(x) + (1 − q)U(x) with 0 < q < 1, U the uniform
distribution over τmin, . . . , τmax and Pθ the Poisson’s distribution with parameter θ. For any
fixed N ∈ {200, 1000, 5000, 10000}, we generate a sample of size N from the Bernoulli model with
parameter q ∈ {0.4, 0.6, 0.8}, then generate the corresponding counts observations according to
the Poisson’s or uniform distribution. The parameters τmin and τmax are fixed equal 10 and 40
respectively whereas θ ranges over {0.6, 1, 1.5}. The observed zero−truncated counts are used to

compute the new MLE N̂τ̂ .
Results. We investigate the performances of N̂τ̂ by calculating its Monte-Carlo mean and

the renormalized standard error (SeN ) based on 1000 samples. We also investigate the bootstrap
based confidence interval for N by providing the estimated non-coverage probabilities (in %)

Inf = 100
1000

∑1000
j=1 1

[N<N
(j)
inf ]

and Sup = 100
1000

∑1000
j=1 1

[N>N
(j)
sup]

, where I(j) = [N
(j)
inf , N

(j)
sup] is the

parametric bootstrap-based confidence interval using the estimated model from the jth Monte-
Carlo sample. The results are summarized in Table 1 (in supplementary data). It is clear that the
renormalised Se decreases when θ grows and increases as q becomes larger. As the small values
of θ characterises small abundances and that a high value of q means that there is a relatively
large number of rare species (according to the simulated distribution), the observed variation of
Se suggests that a high number of rare species will be estimated with larger variance. We can
also notice that the Se decreases with N in all scenarios showing the accuracy of the method
when N becomes larger. The Monte-Carlo mean are very close to the true values of N in all
scenarios whereas the non coverage probabilities are most often greater than the nominal true
level of 2.5%. This indicates that the bootstrap-based confidence interval is too narrow in this
experiment.

Nota: All cited references are relegated in supplementary data
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Analysis of multinomial counts with joint zero-inflation, with an application
to health economics
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Abstract

Zero-inflated regression models for count data are often used in health economics to analyse demand for
medical care. Indeed, excess of zeros often affects health-care utilization data. Much of the recent econometric
literature on the topic has focused on univariate health-care utilization measures, such as the number of
doctor visits. However, health service utilization is usually measured by a number of different counts (e.g.,
numbers of visits to different health-care providers). In this case, zero-inflation may jointly affect several
of the utilization measures. In this paper, a zero-inflated regression model for multinomial (ZIM) counts
with joint zero-inflation is proposed. Maximum likelihood estimators in this model are constructed and their
properties are investigated, both theoretically and numerically. We apply the proposed model to an analysis
of health-care utilization.

In the following, we briefly recall the definition of the ZIM model and we report some results of the
simulation study. Moreover, for notational simplicity, we consider the case where the multinomial response
Zi has K = 3 mutually exclusive outcomes (proofs can be adapted to achieve similar results for K ≥ 3) and
we consider the case where the proportion of zero-inflation πi = π is fixed.

Model and estimation

Let (Zi,Xi), i = 1, . . . , n be independent random vectors defined on the probability space (Ω, C,P). For
every i, we assume that given the total Z1i + Z2i + Z3i = mi, the multivariate response Zi = (Z1i, Z2i, Z3i)
is generated from the model

Zi ∼
{

(0, 0,mi) with probability π,
mult(mi,pi) with probability 1− π,

where pi = (p1i, p2i, p3i) and p1i+p2i+p3i=1. This model reduces to the standard multinomial distribution
(with three modalities, here) if π = 0, while π > 0 leads to simultaneous zero-inflation in the first two
modalities. We model probabilities p1i, p2i and p3i (i = 1, . . . , n) via multinomial logistic regression:

p1i =
eβ

>
1 Xi

1 + eβ
>
1 Xi + eβ

>
2 Xi

, p2i =
eβ

>
2 Xi

1 + eβ
>
1 Xi + eβ

>
2 Xi

and p3i =
1

1 + eβ
>
1 Xi + eβ

>
2 Xi

, (0.1)

where Xi = (1, Xi2, . . . , Xip)
> is a vector of predictors or covariates (both categorical and continuous covari-

ates are allowed) and > denotes the transpose operator. Let ψ = (π, β>
1 , β

>
2 )> be the unknown k-dimensional

parameter of ZIM model (k := 1+2p). For i = 1, . . . , n, let Ji := 1{Zi 6=(0,0,mi)} and hi(β) = 1+eβ
>
1 Xi+eβ

>
2 Xi ,
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where β = (β>
1 , β

>
2 )>. Then, the log-likelihood of ψ based on observations (Z1,X1), . . . , (Zn,Xn) is:

ln(ψ) =
n∑

i=1

{
(1− Ji) log

(
π + (1− π) 1

(hi(β))mi

)

+Ji

[
log

(
mi !

Z1i !Z2i !Z3i !

)
−mi log hi(β) + Z1iβ

>
1 Xi + Z2iβ

>
2 Xi + log(1− π)

]}
. (0.2)

The maximum likelihood estimator ψ̂n := (π̂, β̂>
1 , β̂

>
2 )> of ψ is the solution of the k-dimensional score

equation

l̇n(ψ) :=
∂ln(ψ)

∂ψ
= 0. (0.3)

Simulation study

Fixed probability of zero-inflation, we simulate data from a ZIM model defined by:

p1i =
eβ

>
1 Xi

1 + eβ
>
1 Xi + eβ

>
2 Xi

, p2i =
eβ

>
2 Xi

1 + eβ
>
1 Xi + eβ

>
2 Xi

and p3i = 1− p1i − p2i,

where Xi = (1, Xi2, . . . , Xi7)
> and Xi2, . . . , Xi7 are independent covariates simulated from normal N (0, 1),

uniform U(2, 5), normal N (1, 1.5), exponential E(1), binomial B(1, 0.3) and normal N (−1, 1) distribu-
tions respectively. Parameters β1 and β2 are chosen as β1 = (0.3, 1.2, 0.5,−0.75,−1, 0.8, 0)> and β2 =
(0.5, 0.5, 0,−0.5, 0.5,−1.1, 0)>. Several sample sizes n are considered: n = 150, 300 and 500. Numbers mi

are allowed to vary across subjects, with mi ∈ {3, 4, 5}. Let (n3, n4, n5) = (card{i : mi = 3}, card{i :
mi = 4}, card{i : mi = 5}). For n = 150, we let (n3, n4, n5)) = (50, 50, 50). For n = 300, we let
(n3, n4, n5) = (120, 100, 80) and for n = 500, we let (n3, n4, n5) = (230, 170, 100). Zero-inflation is sim-
ulated from a Bernoulli variable with parameter π, with π = 0.25 and 0.5.

Results. For each combination sample size× zero-inflation proportion, we simulateN = 5000 samples
and for each of them, we calculate the maximum likelihood estimate ψ̂n of (π, β1, β2). Here, we use Newton-
Raphson-like algorithm implemented in the R package maxLik.
For each simulation scenario, based on the N estimates, we obtain the i) empirical biais of each estimator, ii)
average standard error (SE) and empirical standard deviation (SD) of each estimator, iii) empirical coverage
probability (CP) and average length `(CI) of 95%-level confidence interval for each parameter. Results are
given in Table 1 (π = 0.25) and Table 2 (π = 0.5).
From these tables, the bias, SE, SD and `(CI) of all estimators decrease as sample size increases. The bias
stays moderate and empirical coverage probabilities are close to the nominal confidence level. As may also
be expected, we observe that the maximum likelihood estimator of the βjs performs better when the zero-
inflation proportion π decreases . Maximum likelihood seems to provide an efficient method for estimating
ZIM model, even when the number of parameters is quite large.

Keywords: excess zeros, health-care utilization, multinomial logit.
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π̂ β̂1 β̂2
n β̂1,1 β̂1,2 β̂1,3 β̂1,4 β̂1,5 β̂1,6 β̂1,7 β̂2,1 β̂2,2 β̂2,3 β̂2,4 β̂2,5 β̂2,6 β̂2,7

150
bias -0.0044 -0.0014 0.0418 0.0180 -0.0314 -0.0297 0.0152 0.0013 0.0113 0.0220 0.0023 -0.0247 0.0185 -0.0554 0.0013
SD 0.0379 0.7106 0.1877 0.1874 0.1243 0.2278 0.3487 0.1614 0.7164 0.1815 0.1884 0.1228 0.1718 0.4151 0.1659
SE 0.0377 0.7003 0.1826 0.1828 0.1205 0.2201 0.3403 0.1562 0.6972 0.1751 0.1842 0.1183 0.1655 0.4023 0.1588
CP 0.9392 0.9492 0.9454 0.9432 0.9408 0.9460 0.9476 0.9446 0.9460 0.9474 0.9448 0.9418 0.9438 0.9454 0.9466
`(CI) 0.1474 2.7343 0.7127 0.7142 0.4704 0.8584 1.3294 0.6092 2.7216 0.6828 0.7196 0.4616 0.6414 1.5672 0.6191

300
bias -0.0024 -0.0061 0.0206 0.0095 -0.0157 -0.0146 0.0082 -0.0020 0.0014 0.0114 0.0003 -0.0115 0.0106 -0.0238 -0.0032
SD 0.0267 0.4926 0.1299 0.1270 0.0855 0.1545 0.2414 0.1103 0.4930 0.1235 0.1303 0.0833 0.1133 0.2795 0.1123
SE 0.0267 0.4865 0.1269 0.1271 0.0836 0.1525 0.2366 0.1083 0.4844 0.1214 0.1281 0.0821 0.1133 0.2778 0.1099
CP 0.9454 0.9456 0.9420 0.9502 0.9474 0.9480 0.9466 0.9488 0.9464 0.9438 0.9444 0.9452 0.9508 0.9498 0.9478
`(CI) 0.1048 1.9036 0.4965 0.4974 0.3272 0.5965 0.9263 0.4234 1.8950 0.4748 0.5014 0.3210 0.4418 1.0861 0.4297

500
bias -0.0009 0.0044 0.0146 0.0042 -0.0093 -0.0071 0.0060 0.0006 0.0036 0.0077 -0.0005 -0.0064 0.0081 -0.0167 0.0013
SD 0.0210 0.3847 0.0984 0.1010 0.0654 0.1162 0.1847 0.0853 0.3771 0.0942 0.1002 0.0646 0.0880 0.2166 0.0868
SE 0.0208 0.3797 0.0988 0.0991 0.0651 0.1185 0.1848 0.0843 0.3781 0.0945 0.0999 0.0639 0.0876 0.2167 0.0856
CP 0.9488 0.9480 0.9508 0.9442 0.9460 0.9538 0.9504 0.9490 0.9506 0.9494 0.9474 0.9510 0.9496 0.9458 0.9492
`(CI) 0.0816 1.4867 0.3869 0.3882 0.2548 0.4640 0.7238 0.3300 1.4802 0.3699 0.3912 0.2500 0.3422 0.8482 0.3349

Table 1: Simulation results (case π = 0.25). SE: average standard error. SD: empirical standard deviation. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals. All results are based on N = 5000 simulated samples.
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π̂ β̂1 β̂2
n β̂1,1 β̂1,2 β̂1,3 β̂1,4 β̂1,5 β̂1,6 β̂1,7 β̂2,1 β̂2,2 β̂2,3 β̂2,4 β̂2,5 β̂2,6 β̂2,7

150
bias -0.0044 0.0018 0.0748 0.0270 -0.0501 -0.0479 0.0379 -0.0040 0.0056 0.0453 0.0053 -0.0360 0.0282 -0.0723 -0.0018
SD 0.0430 0.9224 0.2484 0.2445 0.1631 0.2952 0.4615 0.2110 0.9107 0.2426 0.2454 0.1620 0.2332 0.5426 0.2144
SE 0.0430 0.9060 0.2377 0.2364 0.1566 0.2842 0.4410 0.2030 0.9061 0.2295 0.2390 0.1543 0.2182 0.5262 0.2070
CP 0.9462 0.9454 0.9408 0.9446 0.9424 0.9495 0.9426 0.9450 0.9521 0.9386 0.9468 0.9384 0.9434 0.9529 0.9460
`(CI) 0.1685 3.5248 0.9238 0.9210 0.6087 1.1039 1.7160 0.7885 3.5223 0.8908 0.9305 0.5995 0.8383 2.0361 0.8033

300
bias -0.0025 -0.0022 0.0393 0.0132 -0.0209 -0.0267 0.0223 -0.0001 -0.0037 0.0211 0.0031 -0.0137 0.0144 -0.0306 0.0004
SD 0.0304 0.6204 0.1669 0.1618 0.1089 0.1985 0.3078 0.1388 0.6099 0.1588 0.1630 0.1068 0.1474 0.3579 0.1420
SE 0.0304 0.6140 0.1609 0.1604 0.1059 0.1922 0.2989 0.1370 0.6125 0.1546 0.1619 0.1043 0.1442 0.3523 0.1393
CP 0.9460 0.9470 0.9416 0.9462 0.9426 0.9466 0.9450 0.9516 0.9516 0.9430 0.9480 0.9480 0.9494 0.9544 0.9470
`(CI) 0.1190 2.3985 0.6285 0.6268 0.4136 0.7502 1.1683 0.5347 2.3919 0.6035 0.6326 0.4072 0.5600 1.3742 0.5436

500
bias -0.0007 -0.0069 0.0205 0.0096 -0.0147 -0.0103 0.0059 -0.0007 -0.0039 0.0134 0.0035 -0.0114 0.0117 -0.0242 -0.0001
SD 0.0236 0.4795 0.1259 0.1253 0.0834 0.1521 0.2333 0.1083 0.4812 0.1213 0.1267 0.0822 0.1127 0.2756 0.1100
SE 0.0235 0.4747 0.1243 0.1240 0.0819 0.1478 0.2311 0.1057 0.4736 0.1194 0.1252 0.0807 0.1101 0.2717 0.1074
CP 0.9446 0.9496 0.9468 0.9510 0.9452 0.9416 0.9484 0.9472 0.9456 0.9454 0.9470 0.9450 0.9498 0.9478 0.9432
`(CI) 0.0923 1.8573 0.4863 0.4853 0.3205 0.5779 0.9046 0.4134 1.8525 0.4670 0.4900 0.3156 0.4295 1.0624 0.4200

Table 2: Simulation results (case π = 0.50). SE: average standard error. SD: empirical standard deviation. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals. All results are based on N = 5000 simulated samples.
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Bayesian statistics techniques are currently given high importance in statis-
tics arena as better ways to analyze data. But, the use of these techniques are
still reserved to an elite and the understanding seem complicated due to insuffi-
cient literature on it’s applications. The main difference between a Bayesian and
a classical inference is the introduction of prior information in Bayesian models.
The prior is a strength and also a weakness of Bayesian approach depending on
the source, reliability and strength of the prior considered. Yet, most Bayesian
models in the literature are limited to noninformative or vague prior, where the
influence of the prior on the overal model is insignificant. In this paper, classi-
cal, Bayesian with vague prior and Bayesian with informative prior are used to
fit identical mixed effects multinomial model in malnutrition among adults in
Burkina Faso. The main aim of the study is profile people living with moderate
and severe malnutrition compared to those with no malnutrition. Malnutrition
is one of world’s rapidly growing public health with Africa included. Despite
the number of research done on malnutrition, this paper steps further by the use
statistical techniques which may improve the quality of the results. Outcomes
of this paper can contribute in a better understanding of risk factors for malnu-
trition in Burkina Faso. The software R and WinBUGS are used to implement
the analyses.

Keyword: MCMC, prior distribution, mixed model, Bayesian model, multi-
nomial regression
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ABSTRACT 

 

The issue of empirical bias that characterizes conventional autocorrelation estimators has 

become a major problem in statistical analysis of short time series which is well-known to be 

influenced by the presence of serial dependence. Previous empirical studies have established that 

estimates of autocorrelation coefficients are biased in small sample and the literature has shown 

that the degree of bias that characterizes conventional autocorrelation estimators seems to be 

more severe than is predicted by formulas based on large sample theory. Bias reduction is a 

crucial property of autocorrelation estimators that has important implications for the estimation 

of autocorrelation in time series modelling.Several empirical studies in statistical literature have 

shown that autocorrelation estimators could be biased when the sample size is relatively small. 

This study therefore is aimed at investigating the problem of empirical bias that is commonly 

associated with conventional autocorrelation estimators for the first-order and higher order 

autocorrelation under different sample sizes. We investigate the bias reduction properties of 

conventional autocorrelation estimators as well as modified autocorrelation estimators. We 

propose hybrids autocorrelation estimators based on the existing conventional and modified 

autocorrelation estimators. Of particular interest is how to eliminate or reduce the empirical bias 

in the proposed hybrids autocorrelation estimators. This study shall employ an extensive Monte 

Carlo studies to investigate the empirical bias in a class of hybrid autocorrelation estimators in 

terms of bias and mean square error  

 

 

Keywords: Autocorrelation Estimator, Bias Reduction, mean square error, efficiency, empirical 

bias 
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Abstract 

The main objective of this study is to introduce a new tool into the principles of results-based 

management which is a new theory. we propose a new composite indicator in this study. The 

construction of our indicator is similar to that of the Human Development Indicator (HDI). But, 

it has the particularity  to take into account several parameters such as  the reference situation, 

minimum values at the reference and targets that has been given to achieve by the development 

policy. By construction, CIMDE measures the efforts done to achieve the targets and thus 

reflects the evolution of the monitoring indicators.  
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1. Mathematical formulation and properties of the composite index  

This is the presentation of the various steps of the theoretical construction of the composite 

index. 

Let 𝐷 be  the total number of treated areas and 𝑑 the identifiers of each field. 𝑑 thus takes the 

values 1, 2, … , 𝐷. 

As an example, we can choose health as area 1 and education as area 2, and so on. 

Let   𝑛 = 1, 2, ⋯ , 𝑁, observed statistical individuals, 

                𝑑 = 1, 2, ⋯ , 𝐷,   the areas covered, 

             𝐾𝑑,  the total number of indicators in the area 𝑑 

             𝑋𝑘𝑑

𝑑 ,  the  𝑘𝑑 th indicator of the area 𝑑  with 𝑘𝑑 = 1, 2, ⋯ , 𝐾𝑑 , 

             𝑋𝑘𝑑

𝑑 (𝑛),  is  the value of the indicator  𝑋𝑘𝑑

𝑑  for individual 𝑛, 

𝛼𝑘𝑑

𝑑 ,  the target of the indicator 𝑋𝑘𝑑

𝑑  indicated public policy, development partners, etc. 

𝑚𝑖𝑛(𝑘𝑑,𝑑)   the minimum value of the indicator  𝑋𝑘𝑑

𝑑  taken by one statistical individual. 

 

We define now a function (elementary index) to measure the efforts of individuals to achieve 

the targets and thus reflects the evolution of the indicator  𝑋𝑘𝑑

𝑑  of the individual 𝑛. 

𝐼𝑘𝑑

𝑑 (𝑛) = {

1      𝑠𝑖  𝑋𝑘𝑑

𝑑 (𝑛) ≥ 𝛼𝑘𝑑

𝑑  

1 −
𝛼𝑘𝑑

𝑑 − 𝑋𝑘𝑑

𝑑 (𝑛)

𝛼𝑘𝑑

𝑑 − 𝑚𝑖𝑛(𝑘𝑑,𝑑)

=  
𝑋𝑘𝑑

𝑑 (𝑛) − 𝑚𝑖𝑛(𝑘𝑑,𝑑)

𝛼𝑘𝑑

𝑑 − 𝑚𝑖𝑛(𝑘𝑑,𝑑)

  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where  𝑚𝑖𝑛(𝑘𝑑,𝑑) is the minimum value of the empirical indicator 𝑋𝑘𝑑

𝑑  at the baseline. For 

reasons of monitoring and evaluation of development policies, this value remains constant in 

the medium and long term1. 

If within the periods of development policy evaluations, an unpredictable shock occurs for an 

individual which registers therefore a value less than the minimum value indicator empirically 

fixed at the baseline situation, the elementary index takes a negative value. In this case, we give 

the value zero (0) to the indicator for the concerned individus.  

                                                           
1 A value of 0.55 point for an individual (Canton, Prefecture, Region, Country, etc.) shows that compared to the 

minimum value, the individual has provided 55% of the effort required to get from the minimum to the target 
(Objective) for the indicator in question or that he still has 45% of the effort required to reach the target. 
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Similarly, the target  𝛼𝑘𝑑

𝑑  remains constant during the period for which it is reached. 

This function of the variable   𝑋𝑘𝑑

𝑑    is continuous and measurable by construction2 on the range 

in which the indicator will ride  𝑋𝑘𝑑

𝑑 . 

The dimensional indicator of the area 𝑑 of the individual 𝑛 is given by the expression: 

𝐼𝑑(𝑛) =
1

𝐾𝑑
 ∑ 𝐼𝑘𝑑

𝑑 (𝑛)

𝐾𝑑

𝑘𝑑=1

 

This is the simple arithmetic average of the elementary indices calculated in the area 𝑑  

  We retain the formula and the composite index is : 

𝐼(𝑛) =
1

𝐷
  ∑ 𝐼𝑑(𝑛)

𝐷

𝑑=1

 

It is also assumed that the weights are equal in all areas. We take as weight  
1

𝐷
. 

The peculiarity of our index is that it integrates the target for each indicator (measurable 

objective) encrypted defined by development policies and that development actors want to 

achieve at medium or long term3. The relevance of our index is that it measure for each indicator 

in each area and globally the efforts of each individual over time to achieve the targets. The 

difference between the indicator and 1 gives the effort which remains for the individual. 

The indicator by construction (measurable function) is reliable and has good properties of a 

measurable function. 

Our elementary index is not sensitive to outliers. Indeed, on the one hand, the minimum values 

are taken into account in the construction of the elementary index. On the other hand, when an 

individual has a very high value, this value is at least equal to the target4 and thus the index is 

set to 1. In addition, the index retains its qualities regardless of the domain of study in which it 

operates. These properties reflect the robustness of the index. The elementary index is a 

continuous and measurable function, it therefore has a strong ability to apprehend small 

variation in the efforts of individuals which have not yet reached the target. 

The elementary, dimensional and composite indices developed in this study can be applied to 

smaller locality (cantons, villages, etc.) of a country. Then it has a strong possibility of 

                                                           
2 The construction of the elementary index is similar to the HDI. 
3 Example: development partner can set a goal of reaching an enrollment rate of 85% for all cantons, prefectures 

or regions after 5 years. 
4 This is to say that this value is reduced to the target value. 
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disintegration. They can do in this way the object of mapping to assess the spatial disparities 

and identify the most disadvantaged individuals. 

These tools can also be used to assess the efforts of governments and development actors to 

achieve the MDGs and now  the Sustainable development goals (SDG). 
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Introduction and notations 

In clinical trials, clinicians are generally interested in estimating survival rates at different time points. 

When the failure times are right censored, the survival function S(t) at time t is usually estimated by the 

product limit estimator commonly known as the Kaplan-Meier (KM) estimator (Kaplan and Meier 

1958). The variance of the estimator is most commonly computed using the Greenwood approximation 

(Greenwood 1926). However, this approximation has been shown to underestimate the real variance, 

principally for the right tail of the survival distribution and in case of heavy censoring (Peto et al. 1977). 

Several other methods have been proposed in the literature to compute confidence intervals (CI) for 

survival rates. Most of them are asymptotically correct and equivalent, but they can give very different 

results for small samples (Yuan and Rai 2011; Fay, Brittain, and Proschan 2013). 

The objective of this communication is to discuss a large set of methods to obtain point wise confidence 

intervals of Kaplan-Meier estimation. 

Let 
Jtt  ...1

 be the times at which occur failures, jn  be the number of patients at risk of failure just 

before time jt  and jd  be the number of failures at time jt . The Kaplan-Meier or product limit estimator 

of the survival function at the date t  is given by (Kaplan and Meier 1958): 

  

















ttj j

j

j
n

d
tS 1ˆ  

with   10ˆ S . This stepwise function estimates the survival function S(t) at time t i.e. the probability to 

have not experienced the event of interest at time t. This estimator is asymptotically Gaussian with mean 

 tS . Different methods are available in the statistical literature to estimate the variance of the KM 

estimator, but the most commonly used is the Greenwood formula (Greenwood 1926). This variance 

estimator, based on the delta method approximation, is given by 
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CIs were used to indicate the precision of the survival estimation. A 100(1-α) -level CI for  tS   is an 

interval such that     1UL BtSBP  with LB  and UB  the respective lower and upper 

bounds.  

Methods 

Eleven different methods for confidence interval estimation were compared. These were: 

1. The linear Wald-type binomial interval; 

2. The Log-transformed confidence interval (Link 1984); 

3. The Log – log transformed confidence interval (Kalbfleisch and Prentice 2002); 

4. The Logit transformed confidence interval (Escobar and Meeker 1998); 

5. The Arcsine square root transformed confidence interval (Nair 1984); 

6. Rothman’s confidence interval (Rothman 1978); 

7. Peto’s variance confidence interval (Peto et al. 1977); 

8. Thomas and Grunkemeier’s likelihood ratio interval (Thomas and Grunkemeier 1975); 

9. Strawdermann and Wells confidence interval (Strawderman and Wells 1997; Strawderman, 

Parzen, and Wells 1997); 

10. Borkowf’s confidence interval (Borkowf 2005); 

11. Beta confidence interval (Fay, Brittain, and Proschan 2013). 

Simulation studies were performed to compare the eleven different methods for CI. Exponential 

distributions of failure rates are considered, with )exp()( ttS  . The simulated censoring dates were 

generated according to a uniform distribution. The considered performance criteria were the coverage 

rate, the length of the confidence interval and they were adapted to the percentage of patients still at risk 

at each timepoint. 

Two different scenarios were considered. The first scenario represents a phase III trial with poor to 

intermediate prognosis patients. The reference study concerns patients with metastatic pancreatic cancer, 

randomized between a control (n=301) and an experimental treatment (n=306) (Cutsem et al. 2009). For 

patients in the control arm, the six months overall survival (OS) rate was estimated to 50%. The study 

was held for two years. A medium sample size of 300 patients will be considered for this simulation for 

a 2 years follow-up.  

The second study is a poor prognosis phase II scenario. One hundred patients with non-small-cell lung 

cancer were randomized between two arms (Parikh et al. 2011). The six months OS rate was estimated 

to 30%. A small sample of 50 patients will be simulated over 18 months for this scenario. 

Three censoring rates were be considered: no censoring (censor rate =0%), low to medium censoring 

(censor rate =10%) and heavy censoring (censor rate =50%). The eleven 95% CIs were computed for 

each scenario and for each censoring level in 10,000 replications. The same random samples were used 

for the different methods. Different time points were considered according to the scenario. All 

simulations were performed with R 3.0.1. The packages “km.ci” (Strobl and Verbeke 2009) and “bpcp” 

(Fay and Fay 2014) were used for CI computing. Some functions could not compute the coverage limits 

when no event occurs prior to time point t or when no patient remains at risk prior to this time point. We 

calculated the coverage probabilities and the length of the CIs when these criteria could be computed 

according with the functions (Yuan and Rai 2011). 

Results 
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The intermediate prognosis trial concerned 300 patients and the median survival time was estimated to 

6 months. The results of the simulations were quite hard to interpret according to time. Three methods 

showed obvious under coverage when more than 50% of the patients are still observed. These are the 

linear, the log transformed Greenwood and the beta method. After the median follow-up time, all the 

eleven CI were too conservative. The Peto’s CI was not performing for the distribution tail. 

When the censoring rate was intermediate, the CIs generally over-estimate the real CI before the median 

follow-up time and then, were not conservative. The Borkowf’s CI was however too large in the 

distribution tail. Finally, for heavy censoring, the beta and the Borkowf methods were the only one to 

provide acceptable results before the median follow-up time. The Peto’s CI was clearly too conservative. 

An example of the obtained results are shown in table 1. 

Table 1: Coverage rates of the 11 confidence intervals for intermediate prognosis for 4 time points for 

medium censoring rate 

Time 6 12 18 24 

Survival (%)            50.00               25.00               12.50                 6.25    

Censoring rate = 0.10 
 

  

At risk (%)            46.87               21.83               10.19                 4.50    

Linear            0.946               0.932               0.936               0.945    

Log            0.948               0.944               0.950               0.955    

Log-log            0.944               0.936               0.948               0.954    

Logit            0.948               0.939               0.949               0.959    

Arcsqrt            0.948               0.935               0.945               0.950    

Rothman            0.948               0.938               0.949               0.954    

Grunkemeier            0.948               0.935               0.947               0.952    

Peto            0.949               0.936               0.939               0.953    

Strawderman            0.951               0.944               0.949               0.956    

Borkowf            0.949               0.954               0.975               0.989    

Beta            0.951               0.941               0.948               0.969    

 Underlined are the values lying in the confidence interval 

The second trial uses a smaller sample. Considering the cohort without censoring, the log – log 

transformation and the beta method provide acceptable results when the number of patients still at risk 

lies between 25% and 50%. The log transformed and the Borkowf ones work better between 50% and 

75%. Finally, the Strawderman’s method gives good results, except for distribution tails. The methods 

give better results for intermediate censoring rates. The Linear, the log transformed and the Peto’s 

approach are the ones for which the coverage probability is not acceptable. Finally, the methods with 

correct coverage in presence of heavy censoring are the log – log transformed, the Rothman, the 

Grunkemeier and the Strawderman method. An example of the obtained results are shown in table 2. 

Table 2: Coverage rates of the 11 confidence intervals for poor prognosis for 4 time points for medium 

censoring rate 

Time 3 6 12 15 

Survival (%)            54.77               30.00                 9.00                 4.93    

Censoring rate = 0.10 
 

  

At risk (%)            53.51               28.40                 8.83                 5.43    
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Time 3 6 12 15 

Survival (%)            54.77               30.00                 9.00                 4.93    

Linear            0.940               0.937               0.919               0.996    

Log            0.942               0.948               0.956               0.950    

Log-log            0.952               0.952               0.978               0.973    

Logit            0.954               0.954               0.963               0.956    

Arcsqrt            0.949               0.947               0.952               0.980    

Rothman            0.951               0.950               0.935               0.802    

Grunkemeier            0.950               0.949               0.970               0.973    

Peto            0.940               0.932               0.868               0.834    

Strawderman            0.952               0.952               0.949               0.939    

Borkowf            0.944               0.956               0.967               0.972    

Beta            0.950               0.950               0.950               0.958    

 Underlined are the values lying in the confidence interval 

Discussions 

To our knowledge, this is the first time that so many methods are compared to evaluate the quality of 

CIs based on KM survival estimators. 

Our study shows that none of the 11 evaluated methods return precise 95% confidence interval for any 

of the used hazard or the censoring rate. The lengths of the computed confidence interval were usually 

equivalent. Among the five proposed Greenwood transformed methods, the log – log transformation is 

the most frequently in the reference confidence range. However it over covers the confidence interval 

on the left side of the survival function and under covers on the right side. 

The other proposed methods for CI estimation are generally comparable to the Greenwood transformed 

one. The approach from Strawderman and Wells, via the Nelson-Aalen estimator of the cumulative 

hazard, shows closer coverage rates. The exact approach proposed by Borkowf however shows poor 

performance, mainly for distribution tails. 

The recommendations which can be raised after this study will be, first, to avoid using the Borkowf’s 

CI for survival analysis. The simple Greenwood, Wald-type CI and the corresponding simple log 

transformation also show their limits, mainly for small sample sizes. The other Greenwood transformed 

CI seem to be equivalent. Two exact approach return correct results. This is the one proposed by Thomas 

and Grunkemeier and the one proposed by Strawderman and Wells. However, these approaches require 

more computing time and should not be suited for large databases.  
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Abstract
We propose asymptotically optimal confidence intervals for the upper and lower tail depen-
dence coefficients. These latter are derived from those obtained for the copula function itself
and based upon kernel estimators introduced, for instance, in Chen & Huang (2007), Gji-
bels & Mielniczuk (1990) and Fermanian & Scaillet (2004). We show the performance of
these confidence intervals through a simulation experiment and apply them to meteorologi-
cal data in order to estimate the extremal dependence between precipitation and temperature.
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Abstract

This paper focuses on the multivariate linear mixed-effects model, including all the correlations

between the random effects when the marginal residual terms are assumed uncorrelated and ho-

moscedastic with possibly different standard deviations. The random effects covariance matrix is

Cholesky factorized to directly estimate the variance components of these random effects. This

strategy enables a consistent estimate of the random effects covariance matrix which, generally,

has a poor estimate when it is grossly (or directly) estimated, using the estimating methods such

as the EM algorithm. By using simulated data sets, we compare the estimates based on the present

method with the EM algorithm-based estimates. We provide an illustration by using the real-life

data concerning the study of the child’s immune against malaria in Benin (West Africa).

Keywords: multivariate linear mixed-effects model, consistent estimate, profiled deviance

1. Introduction

Linear mixed-effects model (Hartley and Rao, 1967; Laird and Ware, 1982; Verbeke, 1997;

Hedeker and Gibbons, 2006; Fitzmaurice et al., 2012) has become a popular tool for analyzing

univariate multilevel data which arise in many areas (biology, medicine, economy, etc), due to

its flexibility to model the correlation contained in these data, and the availability of reliable and

efficient software packages for fitting it (Bates et al., 2014; Pinheiro et al., 2007; Littell et al., 1996;

Halekoh et al., 2006). Univariate multilevel data are referred to as observations (or measurements)

of a single variable of interest on several levels (school in a village which, in turn, is in a town),

while multivariate multilevel data are characterized by multiple variables of interest measured

at multiple levels. Examples include exam or test scores recorded for students across time, and

multiple items at a single occasion for students in more than one school. Multivariate extension

of the (single response variable-based) linear mixed-effects model is, indeed, having increasing

popularity as flexible tool for the analysis of multivariate multilevel data (Sammel et al., 1999;

Schafer and Yucel, 2002; Wang and Fan, 2010; Jensen et al., 2012).
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For the linear mixed-effects model, many methods for obtaining the estimates of the fixed

and the random effects have been proposed in the literature. These methods include Henderson’s

mixed model equations (Henderson, 1950), approaches proposed by Goldberger (1962) as well as

techniques based on two-stage regression, Bayes estimation, etc. For details, see (Searle et al., 1992,

Section 7.4c) and Robinson (1991). Concerning the variance parameters estimation in linear mixed-

effects model, the discussed methods in the literature include the ANOVA method for balanced

data which uses the expected mean squares approach (Searle, 1995, 1971). For unbalanced data,

Rao (1971) proposed the minimum norm quadratic estimation (MINQUE) method, where the

resulting estimates are translation invariant under unbiased quadratic forms of the observations.

Lee and Nelder (1998) gave another method of estimating variance parameters using extended

quasi-likelihood, i.e. gamma-log generalized linear models. For more details on these parameters’

estimation methods in the linear mixed-effects model, see the paper of Gumedze and Dunne (2011).

Beside all the methods cited earlier, come the Maximum Likelihood (ML) and the Restricted

Maximum Likelihood (REML) methods. ML and REML methods are the most popular estimation

methods in the linear mixed-effects model (Lindstrom and Bates, 1988). The main attraction of

these methods is that they can handle a much wider class of variance models than simple variance

components (Gumedze and Dunne, 2011).

In the multivariate linear mixed-effects model, ML and REML estimates are frequently ap-

proached through iterative schemes such as EM algorithm (Meng and Rubin, 1993; Dempster

et al., 1977; An et al., 2013; Schafer and Yucel, 2002; Shah et al., 1997). This avoid the difficulties

related to the direct calculating of the parameters’ likelihood, since the random effects are not

observed, without ignoring the flexible computationally of these algorithms. Despite the existence

of valid theorems which show the asymptotic convergence of the sequences produced by these

algorithms toward ML estimates (Dempster et al., 1977), in practice this may not always work

exactly as expected.

In this paper, we focus on the multivariate linear mixed-effects model, including all the cor-

relations between the random effects while the marginal residuals are assumed independent ho-

moscedastic with possibly different standard deviation. The class of multivariate mixed-effects

models considered here assumes that the random effects and the residuals follow Gaussian dis-

tributions, and the dependent variables are continuous. In this model, our approach consists in

directly calculating the likelihood of the model’s parameters. This likelihood is used to obtain

the ML estimates or the REML estimates through the provided REML criterion. This strategy

may explain the high quality of the estimates of both fixed effects parameters and random effects’

variance parameters as well as residual variance parameters. This approach may be viewed as

a generalization of the approach proposed by Bates et al. (2014) under the R software (R Core

Team, 2015) package named lme4.
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2. Multivariate linear mixed-effects model

For the sake of simplicity we focus on the bivariate case (d = 2) of the model, but the gener-

alization to higher dimensions (d > 2) is straightforward. Thus, in dimension 2, the model is the

following:

y1 = X1β1 + Z1γ1 + ε1

y2 = X2β2 + Z2γ2 + ε2 (1)

where

γ =


γ1

γ2


 ∼ N


0,Γ =


 Γ1 Γ12

Γ>12 Γ2




 , ε =


ε1

ε2


 ∼


0,


σ

2
1IN 0

0 σ2
2IN




 . (2)

For k ∈ {1, 2}, βk and γk denote respectively the fixed effects and the random effects vector

of covariates, while εk is the marginal residual component in the dimension k of the model. Xk

is a matrix of covariates and Zk a covariates-based matrix of design. dim(Xk)= N × pk and

dim(Zk)= N × qk, where N is the total number of observations. pk and qk are, respectively, the

number of fixed effect related covariates and the number of random effect related covariates in the

dimension k of the model. y = (y>1 , y>2 )> is the vector of marginal observed response variables of

the model. We assume that y is a realization of a random vector Y and belongs to R2N . The bold

symbols represent parameters, or vectors, of multiple dimensions (i.e. Γ1 concerns dimension 1 of

the model while Γ concerns both dimensions).

Γ1 and Γ2 are the variance-covariance matrices of γ1 and γ2, respectively. Γ1 and Γ2 must be,

indeed, positive semidefinite. It is then convenient to express the model in terms of the relative

covariance factors, Λθ1 and Λθ2 , which are q1×q1 and q2×q2 matrices, respectively. Λθ1 is a block

diagonal matrix. Each element in the diagonal of Λθ1 is a lower triangular matrix whose nonzero

entries are the components of the vector θ1. That is, θ1 generates the symmetric q1× q1 variance-

covariance matrix Γ1, according to Γ1 = σ2
1Λθ1Λ>θ1 , same as θ2 which generates Γ2 according to

Γ2 = σ2
2Λθ2Λ>θ2 . σ2

1 and σ2
2 are the same marginal residual variances used in the model expression

(see Equation 2). Using the variance-component parameters, θ1 and θ2, the marginal random

effects, γ1 and γ2, are expressed as γ1 = Λθ1u1, γ2 = Λθ2u2, such that

u =


u1

u2


 ∼ N (0,Σu) , with Σu =


 σ2

1Iq1 σ1σ2ρ

σ1σ2ρ
> σ2

2Iq2


 . (3)

In Equation 3, ρ is a block diagonal matrix and u is a realization of a random vector U . The
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diagonal elements of ρ, say ρ, are matrices which contain the correlations between γ1 and γ2. The

bivariate linear mixed-effects model is then re-expressed as:

y1 = X1β1 + Z1Λθ1u1 + ε1

y2 = X2β2 + Z2Λθ2u2 + ε2 (4)

with

u =


u1

u2


 ∼ N (0,Σu) , ε =


ε1

ε2


 ∼


0,


σ

2
1IN 0

0 σ2
2IN




 . (5)

Then the parameters which will be estimated are β1, β2, σ
2
1 , σ

2
2 , θ1, θ2 and ρ.

We provide the likelihood of the model’s parameters and then give the REML criterion which

will be optimized for the obtaining of the parameters’ REML estimates. The ML criterion is the

log-likelihood of the model’s parameters which is displayed through the following theorem

Theorem 2.1. Suppose that y = (y>1 , y>2 )> satisfies the bivariate linear mixed-effects model

expressed by Equations (4 and 5), where β1, β2, σ
2
1 , σ

2
2 , θ1, θ2, ρ are the parameters which need

to be estimated, and β = (β>1 , β>2 )>, σ = (σ2
1 , σ

2
2)>, θ = (θ>1 , θ>2 )>. Denoting by Yσ =

(√
σ2

2y
>
1 ,
√
σ2

1y
>
2

)>
, Xσ =



√
σ2

2X1 0

0
√
σ2

1X2


, Zσθ =



√
σ2

2Z1Λθ1 0

0
√
σ2

1Z2Λθ2


, and µU |Y=y

the conditional mean of U given that Y = y, the log-likelihood of β, σ, θ and ρ given y is expressed

as

`(β,θ, ρ,σ|y) = −
r(β̂θ,ρ,σ, µU |Y=y) +

∥∥∥RX(β − β̂θ,ρ,σ)
∥∥∥

2

2σ2
1σ

2
2

− N − q
2 log(σ2

1σ
2
2)

−1
2 log(|Σu|)−

1
2 log(|Lθ,ρ,σ|2) (6)

where, q = q1 + q2, β̂θ,ρ,σ and µU |Y=y satisfy


X

>
σXσ X>σ Zσθ

Z>σθXσ Z>σθZσθ +
√
σ2

1σ
2
2Σ−1
u




 β̂θ,ρ,σ
µU|Y=y


 =


X

>
σ

Z>σθ


Yσ, (7)

r(β̂θ,ρ,σ, µU |Y=y) =
∥∥∥Yσ −Xσβ̂θ,ρ,σ − ZσθµU |Y=y

∥∥∥
2

+ σ2
1σ

2
2µ
>
U |Y=yΣ−1

u µU |Y=y, (8)
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Lθ,ρ,σ satisfies

Lθ,ρ,σL
>
θ,ρ,σ = Z>σθZσθ +

√
σ2

1σ
2
2Σ−1
u , (9)

and RX satisfies


X

>
σXσ X>σ Zσθ

Z>σθXσ Lθ,ρ,σL
>
θ,ρ,σ


 =


 RX 0

RZX L>θ,ρ,σ



>
 RX 0

RZX L>θ,ρ,σ


 . (10)

By integrating the marginal density of Y with respect to the fixed effects, the REML criterion

can be obtained (Laird and Ware, 1982). This REML criterion is expressed through the following

theorem

Theorem 2.2. Suppose that y = (y>1 , y>2 )> satisfies the bivariate linear mixed-effects model

expressed by Equations (4 and 5). Taking into account the notations in the Theorem 2.1, the

REML criterion of σ, θ and ρ given y is expressed as

L (σ,θ, ρ|y) =
exp

[
− r(β̂θ,ρ,σ,µU|Y=y)

2σ2
1σ

2
2

]
(σ2

1σ
2
2) p+q−N

2

(2π)(2N−p)/2|Σu|1/2|Lθ,ρ,σ||RX |
(11)
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Figure 1 : Distribution of the localized spots 
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Introduction 

Population surveys are a matter of issues in developing countries. As there is no consistent 

addressing methods it is hard to prepare a sampling data base in order to select the 

participants by probabilistic ways. Non probabilistic methods are used with their known 

insufficiencies. 

A good knowledge of the repartition of the households and the people in a city can help to 

define a consistent sampling strategy for population surveys. Once the places people leave is 

known, one can go and select them. Spatial methods helps to provide estimation of 

characteristics according to geographical distance with known points. Their use have been 

extended to several domains. These can contribute to reinforce surveying systems. 

We propose an estimation of the density of the population in each geographical point as 

database for preparing a sampling method for population surveys in an urban statement in 

Africa, the city of Bobo-Dioulasso. 

Methods 

Burkina Faso is a land locked developing country in Western Africa. Bobo-Dioulasso is the 

second biggest city of the country, with a population estimated to more than six hundred 

thousand inhabitants in the national census of 2006. We have identified and geolocated 85 

“spots”(figure 1)distributed in the territory of the urban commune of Bobo Dioulasso. The 

choice of these spotswas based on their distribution in order to have a representative sample. 

Each locality was identified by its 

geographical coordinates. Additional 

data were collected: type of 

neighborhood, habitat type, number 

of habitations by type of habitat, the 

number of households was counted 

100meters round around each spot. 

We estimated the number of 

household and the number of 

inhabitant based on additional 

data.The density associated to these 

spots were used as basis to estimate 

the density, defined as the number of 

people leaving at 100 meters round 

around any point by kriging. 

The estimated density were considered as a linear combination of the 85 spots with estimated 

coefficients. 
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Figure 2 : Map of kriging 

 

𝑍∗ =  λi𝑍𝑖

𝑛

𝑖=1

 

With 

- 𝑍∗: Estimator Z (the estimated population density) 

- 𝑍𝑖 : Observed value at point si 

- λ𝑖 : The parameters to be estimated 

The area of Bobo-Dioulasso was then divided into several small areas with radius of 100 

meters. These points were considered as sampling areas and the living population was 

estimated by the methods described above. 

A two-stage sampling design was developed, based on the estimates of the population density 

performed above. The formula of the Horvitz-Thompson total estimator was rewritten, with 

the corresponding variance. The first stage consists on random selection 100 meters areas. 

The second stage consists in the selection of the observation unit in the selected areas. The 

unit can be the house, the household or the individual. We note: 

→ 𝜋𝐻ℎ  : the probability of selecting an area𝑢ℎamong 𝐻, 

→ 𝜋𝐻ℎ𝑘 : the probability of jointly selecting areas𝑢ℎ  et 𝑢𝑘among 𝐻, 

∆𝐻ℎ𝑘= 𝜋𝐻ℎ𝑘 − 𝜋𝐻ℎ𝜋𝐻𝑘  

→ 𝜋𝑖|ℎ  : the probability of selecting the unit𝑖 living in an area𝑢ℎ , 

→ 𝜋𝑖𝑗 |ℎ : the probability of selecting the units𝑖 and 𝑗living in an area 𝑢ℎ  

∆𝑖𝑗 |ℎ= 𝜋𝑖𝑗 |ℎ − 𝜋𝑖|ℎ𝜋𝑗 |ℎ  

One can denote that 𝜋𝑖|ℎ  and 𝜋𝑖𝑗 |ℎ  depend on 𝑍ℎ
 , the estimated number of people living in the 

area according to kriging estimation. 

 

Results 

The localized spots were distributed 

all around the city. We couldn’t find 

significant spots in certain areas in the 

northern and in the western suburbs 

were there were no settlements. The 

corresponding densities were cross 

checked by the research team. 

Good estimations of the population 

were finally obtained (figure 2). 

The following sampling plan was 

defined: 

First degree, we select 𝐻geographical 

areas according to the kriging 

estimation. Then in each geographic area we select a 𝑛ℎnumber of units to be surveyed. The 

Horvitz-Thompson estimator adapted to the sampling design is given by the formula: 
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𝑇 𝐻𝑇(𝑆) =  
𝑦𝑖
𝜋𝑖

𝑛

𝑖=1

=   
𝑦𝑖

𝜋𝐻ℎ𝜋𝑖|ℎ

𝑛ℎ

𝑖=1

𝑚

ℎ=1

 

Its estimated variance is: 

𝑉  𝑇  𝑆  =   
𝑇(𝑢ℎ)

𝜋𝐻ℎ

𝑚

𝑘=1

𝑚

ℎ=1

𝑇(𝑢𝑘)

𝜋𝐻𝑘
∆𝐻ℎ𝑘

                   
𝑉 𝐴

    +      
𝑉 𝑇  𝑆ℎ  

𝜋𝐻ℎ

𝑀

ℎ=1         
𝑉 𝐵

 

With 𝑉  𝑇  𝑆ℎ  =    
𝑦𝑖

𝜋𝑖|ℎ

𝑛ℎ
𝑗=1

𝑛ℎ
𝑖=1

𝑦𝑙

𝜋𝑗 |ℎ
∆𝑖𝑗 |ℎ  

 

Discussions 

We could define a method for designing probabilistic surveys in urban areas where no 

addressing method was available. This method will be very soon applied for large studies in 

our current research activities. The method follows rigorously the principles of spatial 

analysis and then the linear sampling estimator definition. Then consistent estimation can be 

calculated with controlled variances. 

This survey method appears readily reproducible and based on so easily mobilized tools, it 

can be applied to other localities. However, this needs the localization of spots and a rigorous 

data collection process. The Horwitz-Thompson’s variance is quite hard to compute for 

complex samplings. We recommend the use of replicated estimation of variance like bootstrap 

methods to get robust estimates. 
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estimator-processes, called multi-step

MLE-process

Ali S. Dabye*, Alix A. Gounoung*, Yury A. Kutoyants �

Abstract

We consider several problems of parameter estimation by the observations

of n independent observations of inhomogeneous Poisson processes. We in-

troduce a new class of estimation (Method of Moments Estimators) for in-

homogeneous Poisson processes. We propose conditions of their consistency

and asymptotic normality.

The main contribution of the work is the class of multi-step MLE-processes.

We show that this device provides "on line" estimator-process which can eas-

ily be calculated and is asymptotically e�cient.

Key words:Inhomogeneous Poisson process, Parameter estimation, Con-

sistency, asymptotic normality, multi-step MLE-processes.
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AMS subject classi�cation: 62F03, 62F05, 62G10, 62G20.

Introduction

This work is devoted to several problems of statistical inference for the

special model of observations inhomogeneous Poisson process. We have to

note that the Poisson processes are the most simple stochastic models and

the same time this is su�ciently reach class of processes which can be used

to describe many sequences of events in di�erent sciences. We can mention

here the optical telecommunication theory, Fiability, Biology, Earth sciences,

Medecine, and soon.

The choice of intensity function in the wide class of positive functions

allows to �t the model of inhomogeneous Poisson processes to many physical,

technical etc phenomenou.

There are several early works on statistical inference for inhomogeneous

Poisson processes related mainly with the simple linear models, where the

estimators of the unknown parameters can be written explicitly.

The general (non linear) theory of parameter estimation for stochastic

processes and in particularly for inhomogeneous Poisson processes where de-

velopped by [4].

The theory of non parametric estimation one can �n in [5].

The forth comming monograph [5] treats the problems of hypothesis test-

ing too. There one can �nd the relevant references concerning the histoty of

the statistical inference for inhomogeneous Poisson processes.

In the presented work we consider the following problems.

1. Construction of the parameter estimators using the Method of moments

(MM). Remind that the MM is one of the oldest methods of construction of

estimators, but, as we know, till now was never used in the case of inhomo-

geneous Poisson processes.

We give several examples of the the intensities, where the traditional

2
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methods like maximum likelihood, minimum distance, bayesian etc can not

probite a computionally simple estimators, but the MM allows the construc-

tion of simple estimators providing the consistency and asymptotic normality

of these estimators.

2. We develope a new class of estimator-processes, called multi-step MLE-

process. The similar construction was recently proposed by kutoyants [7]

in the case of di�usion processes. This estimator-process is realised in two-

steps. First we construct a preliminary estimator based of the small part of

initial observations. Then this estimators are used in the Fisher score-fuction

device to provide the one-step, two-step and soon MLE-process.

This estimator process is asymptotically e�cient in some sense because

it is asymptotically equivalent to the MLE and the same time its calculation

is relatively easy to do. As preliminary estimator we can use, for example,

the estimator of the method of moments.
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E-mail: saliou diouf@yahoo.fr, aliou.diop@ugb.edu.sn.

Abstract

In this paper, we study the extreme value behavior of the space-time process given by

Xi(t) =
∑

k≥0

Ψi,k(t)Zi−k(t), t ∈ [0, 1]d,

We assume that (Zi)i≥0 is a sequence of iid random fields on [0, 1]d with values in the Sko-
rokhod space D[0, 1]d of càdlàg functions (i.e right-continuous functions with left limits)D[0, 1]d

equipped with the J1topology.The coefficients (Ψi,k)k≥0 are processes with continuous sample
paths.
Using the notion of regular variation for D-valued random elements firstly we show that X is
regularly varying if Z1 is regularly varying. This result appears as a extension of the Theorem
3.1 of [3].
Secondly, using point processes based on Xi(t), we study the limiting distribution of the nor-
malized maximum process {a−1

n max1≤i≤n Xi(t)}t∈[0,1]d . This second result can be viewed as
an extension of [9] from deterministic real coefficients to random coefficients (Ψi,k)k≥0.

Keywords and phrases : Regularly variation; Poisson process; Tail probability; Breiman’s
lemma.
AMS 2000 Mathematics Subject Classification : Primary 60G52; Secondary 60G17,
62M10.

1 Introduction

In recent years, the random functions with values in the space of càdlàg functions has been the
purpose of many investigations, we can cite [9], [3], [11], [12]. In this dynamic we study the extreme
value theory for infinite series of processes with random coefficients define by

Xi(t) =
∑

k≥0

Ψi,k(t)Zi−k(t), t ∈ [0, 1]d, (1.1)

where Zi = {Zi(t)}t∈[0,1]d , i ∈ Z are i.i.d. regularly varying processes with sample paths in D,
Z1 is assumed to be regular varying on D and Ψi,k = {Ψi,k(t)}t∈[0,1] are random processes with
continous sample paths.

1
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More precisely, using point process technique we will determine the limit distribution of the nor-
malized maximum process {a−1

n max1≤i≤nXi(t)}t∈[0,1]d where Xi(t) define by 1.1 .
Regular variation encountered in various areas, such as finance, insurance, meteorology and hydrol-
ogy. For example, see [9] for which Xi(t), i = 1, 2, . . . can be consider as the time series of annual
maxima of ozone levels at location t and we may be interested in the probability that the maximum
ozone level over a given region [0, 1]d does not exceed a given standard level f ∈ D([0, 1]d) in n
years. In the example of [11], Xi(t) is the high tide water level at location t and time i along the
dutch coast. He calculated the probability that the water level does not exceed the level of the
dykes, which corresponds to

P
(

max
1≤i≤n

Xi(t) ≤ f(t) for all t ∈ [0, 1]

)
.

1.1 Regular variation on Rd

We recall the notion of regular variation in Rd. For the following, refer to [3] or [2]. We say that
a d-dimensional random vector Z with values in Rd is called a regularly varying if there exists

a sequence (an)n ↗ ∞ and a non-null Radon measure µ on Rd0 = [−∞,∞]d \ {0}, such that

µ(Rd0 \ R) = 0 and

nP(a−1
n Z ∈ .) ν−→ µ(.) in Rd0, (1.2)

here
ν−→ denotes vague convergence. The measure µ satisfies the following property: there exists

α > 0 (called the index of Z) such that µ(sB) = s−1µ(B) for any s > 0 and for all Borel sets

B ∈ Rd0. For a random Z satisfying 1.2, we write Z ∈ RV ({an}, µ,R
d

0).
If a random vector Z with values in Rd is regularly varying, we have for any norm ‖.‖ and for any
r > 0,

nP(‖Z‖ > anr)→ cr−α (1.3)

where c = ν({x ∈ Rd0; ‖x‖ > 1}). Let Rd0 = Rd\{0}; S = {x ∈ Rd; ‖x‖ = 1} be the unit sphere in
Rd and Φ : Rd0 → (0,∞) × S be the polar coordinate transformation: Φ(x) = (‖x‖, x/‖x‖). The

fact that Z ∈ RV ({an}, µ,R
d

0) is equivalent

nP
(
Φ(a−1

n Z) ∈ .
) ν−→ (cνα × σ)(.) in (0,∞]× S (1.4)

where α is called the index of Z, να(r,∞) = r−α and σ is a probability measure on S given by

σ(S) = c−1ν({x ∈ Rd0; ‖x‖ > 1, x/‖x‖ ∈ S}).

1.2 Regular variation on D
The notion of regular variation we will be use in this paper follows the same lines as Balan [3].
Let D = D([0, 1]) be the space of càdlàg functions x : [0, 1] → R equipped with a metric d0

which is equivalent to the Skorohod J1-metric and such that it makes D a complete separable
metric space, see [4] or [5]. We denote by B(D) the class of Borel sets in D, equipped with the
J1-topology. Let SD = {x ∈ D; ‖x‖∞ = 1} be the unit sphere in D equipped with metric d0,
with ‖x‖∞ = supt∈[0,1] |x(t)| for any x ∈ D, and B(SD) be the class of Borel sets in SD. We write
D0 = D \ {0}, 0 is the null function in D, and B(D0) be the class of Borel sets in D0.
Let D0 := (0,∞]× SD be the space equipped with the product metric, where (0,∞] has the metric

2
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ρ(x, y) = (1�x)− (1�y) with (1�∞) = 0. We denote by B(D0) the class of Borel sets in D0.

By the fact that D0 is not a locally compact space with a countable basis, the notion of
vague convergence is not appropriate on this space. D0 is a complete separable metric space
(CSMS) equipped with a distance called d0, which is equivalent to Skorohod J1-metric then vague
convergence can be replaced by ŵ−convergence. Let a measure µ on a CSMS E (with metric d), µ
is boundedly finite if for any bounded Borel set B ∈ E, µ(B) <∞. A sequence (µn)n of boundedly

finite measures converges to a boundedly finite measure µ in the ŵ−topology ( written as
ŵ−→ µ) if

µn(B)→ µ(B) for any bounded Borel set with µ(δB) = 0.

Definition 1.1 We say that a process Z = {Z(t)}t∈[0,1] with simple paths in D has a regular
variation distribution if there exist α > 0, c > 0 a sequence (an)n≥1 with an > 0, an ↗ ∞ and a
probability measure σ on SD such that

nP
(
Φ(a−1

n Z) ∈ .
) ŵ−→ cνα × σ (1.5)

where α is called the index of Z, να is a measure on (0,∞] given by να(dx) = αx−α−11(0,α)(x) and
να({∞}) = 0. Φ the homeomorphism define by Φ : D→ (0,∞]× SD with Φ(x) = (‖x‖∞, x/‖x‖∞)
For more details for this definition see [3].

2 Assumptions and preliminary results

2.1 Point process

Point processes play an important role in the study of extreme value theory of random sequences.
Some extreme value data, especially in environmental contexts, often exhibit some nonstation-
arities. To take into account these features, it is necessary to understand the behavior of point
processes based on nonstationary sequences. We quickly review the salient facts of point pro-
cess theory, for notation and background of point process theory, we follow Neveu ([17]); see also
Kallenberg ([15]) and Resnick ([20]).

Let E be a state space taken to be a subset of compactified Euclidean space (such as Rd =
[−∞; +∞]d). Let E be the Borel σ-algebra generated by open sets. For x ∈ E and A ∈ E , define
the measure εx on E by

εx(A) =

{
1, x ∈ A,
0, x /∈ A. (2.6)

Let {xi, i ≥ 1} be a countable collection of (not necessarily distinct) point of the space E. A
point measure mp is defined to be a finite measure on relatively compact subsets of E of the form
mp =

∑∞
i=1 εxi which is nonnegative integer-valued. The class of point measures is denoted by

Mp(E) and Mp(E) is the smallest σ-algebra making the evaluation maps m→ m(F ) measurable
where m ∈Mp(E) and F ∈ E .
Let C+

K be the set of all continuous, non-negative functions on the state E with compact support.
If Nn ∈ Mp(E) then Nn converges vaguely to N (Nn ⇒ N) if Nn(f) converges to N(f) for every
f ∈ C+

K , where N(f) =
∫
fdN . A Poisson process on (E, E) with mean measure µ is a point

process N such that, for every A ∈ E , N(A) is a Poisson random variable with mean measure
µ(A). If A1, . . . , Ak are mutually independent sets then N(A1), . . . , N(Ak) are independent ran-
dom variables. A Poisson process or a Poisson random measure with mean measure µ is denoted
by PRM(µ).
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2.2 Assumptions

For the model define by (1.1) we suppose the following conditions hold:
H1− Suppose for all i ≥ 0 (Ψi,0, . . . ,Ψi,m, Zi, . . . , Zi−m) is indepedent of (Zk)k>i
and Ψi,0 is indepedent of (Zk)k>i,
H2− for each fixed m, the sequence (Ψi,0, . . . ,Ψi,m, i ∈ Z) is strongly mixing for this see [10],
H3− We suppose there exist some γ ∈ (0, α) such that for all i ≥ 0,

∑

k≥0

E ‖ Ψi,k ‖α−γ∞ <∞ and
∑

k≥0

E ‖ Ψi,k ‖α+γ
∞ <∞ if α ∈ (0, 1) ∪ (1, 2), (2.7)

E


∑

k≥0

‖ Ψi,k ‖α−γ∞




(α+γ)/(α−γ)

<∞ if α ∈ (1, 2), (2.8)

E


∑

k≥0

‖ Ψi,k ‖2∞




(α+γ)/2

<∞ if α > 2. (2.9)

H4− We assume that for all i ∈ Z the random Ψi,k has an upper endpoint ck defined by

ck = sup{c : P(‖Ψi,k(t)‖∞ ≤ c) < 1}, k = 1, 2, . . . .

and there exists δ > 0 such that
∑∞
k=1 c

1−δ
k <∞,

∑∞
k=1 c

αδ
k <∞.

2.3 Main result

In this section we establish the process defined by 1.1 is regularly varying on D.

Theorem 2.1 Assume that Zi = {Zi(t)}t∈[0,1]d , i ≥ 0 be i.i.d processs with sample paths in D such

that Z0 ∈ RV ({an}, ν,D0), and α > 0 be the tail index of Z0.
Suppose that Ψi,j = {Ψi,k(t)}t∈[0,1]d , k ≥ 0 be some processes with continuous sample paths, such

that P
(⋃

k≥0{‖ Ψi,k ‖∞> 0}
)

= 1 , and there exists an m ≥ 1 and a set T1 ⊂ [0, 1] containing 0

and 1, with [0, 1]/T1 countable, for all t ∈ T1 we have

P

(
m⋃

k=0

{Ψi,k(t) 6= 0}
)
> 0. (2.10)

If in additional the condition H1 and H3 is hold then the series X define by

Xi =
∑

k≥0

Ψi,kZi−k (2.11)

converge in D a.s and Xi ∈ RV ({an}, νXi ,D0) where

νXi(.) = E


∑

k≥0

ν ◦ h−1
Ψi,k

(.)


 . (2.12)

For any Ψ ∈ D, we define the product map hΨ : D→ D by hΨ(x) = Ψx, x ∈ D,
with (Ψx)(t) = Ψ(t)x(t) for any t ∈ [0, 1].

4
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During the proof of Theorem2.16, we shall need the following series of lemmas. The first is due to
[12], this lemma characterizes a regularly varying random field in terms of the finite-dimensional
distributions.

Lemma 2.2 The random field X with values in D is regularly varying if and only if there exist
a sequence (an) satisfying nP(|X|∞ > an) → 1 and a collection of Radon measures mt1,...,tk ,

ti ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1, not all of them being the null measure, with mt1,...,tk(Rk \ R) = 0,
such that the following conditions hold :

1. The following relation holds :

nP(a−1
n (Xt1 , . . . , Xtk) ∈ .) ν−→ mt1,...,tk(.), (2.13)

for all ti ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1, , where
ν−→ refers to vague convergence on the borel

σ-field B(Rk0).

2. For any ε, η > 0 there exist δ ∈ (0, 0.5) and η0 such that for n ≥ n0

nP(w′′(X, δ) > anε) ≤ η) (2.14)

nP(w(X, [0, 1]d \ [δ, 1− δ]d) > anε) ≤ η) (2.15)

The measures mt1,...,tk , ti ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1, determine the limiting measure m in
the definition of regular variation of X

where for an ∈ D, δ > 0

w′′(X, δ) = sup
s1≤s≤s2,|s2−s1|≤δ

min (| x(s)− x(s1) |, | x(s)− x(s2) |)

and
w(x,A) = sup

s1,s2∈A
| x(s1)− x(s2) |

The second lemma is Breimans lemma for the details see [6].

Lemma 2.3 Let Z and Y be independent nonnegative random variables such that Z ∈ RV ({an}, ν,R0)
and 0 ≤ E(Y α+γ) <∞ for some γ > 0, where α > 0 is the index of Z (and hence, ν(r,∞) = cr−α

for any r > 0, for some c > 0. Then X = Y Z ∈ RV ({an}, ν,R0) where νX(r,∞) = cr−αYα for
any r > 0

The second is a version of Breimans lemma for processes with sample paths in D.

Lemma 2.4 Assume that Zi = {Zi(t)}t∈[0,1]d , i ≥ 0 be i.i.d processs with sample paths in D
such that Z0 ∈ RV ({an}, ν,D0), and α > 0 be the tail index of Z0. Suppose that Ψi,j =

{Ψi,k(t)}t∈[0,1]d , k ≥ 0 be some processes with continuous sample paths, such that P
(⋃

k≥0{‖ Ψi,k ‖∞> 0}
)

=

1 , and there exists an m ≥ 1 and a set T1 ⊂ [0, 1] containing 0 and 1, with [0, 1]/T1 countable, for
all t ∈ T1 we have

P

(
m⋃

k=0

{Ψi,k(t) 6= 0}
)
> 0. (2.16)

If in additional the condition H1 and H3 is hold then the series X define by

Xm
i =

m∑

k=0

Ψi,kZi−k (2.17)

5
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converge in D a.s and Xm
i ∈ RV ({an}, νX

m
i ,D0) where

νX
m
i (.) = E

(
m∑

k=0

ν ◦ h−1
Ψi,k

(.)

)
. (2.18)

For any Ψ ∈ D, we define the product map hΨ : D → D by hΨ(x) = Ψx, x ∈ D, with (Ψx)(t) =
Ψ(t)x(t) for any t ∈ [0, 1].

Proof.
We use inductive method to proof Lemma2.4.
First, we establish that X0

i = ψi,0Zi is regularly varying, for this we have to verify relation2.13.

nP(a−1
n Ψi,0Zi > x) = E(nP(a−1

n Ψi,0Zi > x�ψi,0 = y0)

= E(nP(a−1
n Zi > xy−1

0 �ψi,0 = y0)

→ E(ν ◦ h−1
ψi,0

(x))

We use lemma2.2 to establish result for k = 1, Ψi,0Zi + Ψi,1Zi−1 is regular varying

nP(a−1
n (Ψi,0Zi + Ψi,1Zi−1 > y)→ νX

2
i (.) = E

(
1∑

k=0

ν ◦ h−1
Ψi,k

(y)

)
. (2.19)

Let Y0 = Ψi,0Zi and Y1 = Ψi,1Zi−1, since (Y0, Y1) are independent it follows from standard regular
variation theory (see[19],[19] [12]) that

nP
(
a−1
n (Y0, Y1) ∈ (., .)

)
→v µ (2.20)

where µ concentrates on D0 × D0

Now let (Y ′i,0, Y
′′
i,1) be iid copies of (Yi,0, Yi,1) and applying Proposition 3.21 in [19] to (2.20) gives

ξn =
∞∑

i=0

ε( i
n ,a
−1
n (Y ′i,0,Y

′′
i,1)) ⇒ ξ =

∞∑

i=0

ε(t′i,(j
′
i,0)) +

∞∑

i=0

ε(t′i,(0,j
′′
i )) (2.21)

on Mp([0,∞)× D2

0) where the limit is PRM on [0,∞)× D2

0 with mean measure dt× dµ.
Now we define this map

T : [0,∞)× D2

0 → D0 by
T (t, x, y) = x+ y

is vaguely continous, so Proposition 3.18 in [19] may be applied to (2.21) to obtain

ξn ◦ T−1 =
∞∑

i=0

ε( i
n ,a
−1
n (Y ′i,0,Y

′′
i,1)) ⇒ ξ ◦ T−1 =

∞∑

i=0

ε(t′i,j
′
i)

+
∞∑

i=0

ε(t′i,j
′′
i ).

Where the limit PRM concentrates on [0,∞)× D0 with mean measure µ ◦ T−1.
To evaluate µ ◦ T−1 we compute for z > 0

µ ◦ T−1(z) = µ{(x, y) : x+ y > z}

and because µ concentrates on D2

0 this equals

µ{(x, 0) : x+ 0 > z}+ µ{(0, y) : 0 + y > z} = E(ν ◦ h−1
ψi,0

(z)) + E(ν ◦ h−1
ψi,1

(z))
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Applying again Proposition 3.21 in [19], we have

nP
(
a−1
n (Yi,0, Yi,1) > x

)
→v E(ν ◦ h−1

ψi,0
(x) + ν ◦ h−1

ψi,1
(x)).

To completes the proves of Lemma2.4, we have now to verify the conditions 2.14 and 2.15.

w′′(Yi,0, Yi,1, δ) ≤ w′′(Yi,0, δ) + w′′(Yi,1, δ) (2.22)

w(Yi,0, Yi,1, [0, 1]d \ [δ, 1− δ]d) ≤ w(Yi,0, [0, 1]d \ [δ, 1− δ]d) + w(Yi,2, [0, 1]d \ [δ, 1− δ]d) (2.23)

Combining the fact that Yi,0, and Yi,1 are regularly varying and relation (2.22), (2.23)
then we obtain

nP(w′′(Yi,0 + Yi,1, δ) > anε) ≤ η (2.24)

nP(w(Yi,0 + Yi,1, [0, 1]d \ [δ, 1− δ]d) > anε) ≤ η) (2.25)

This prove the result for k = 2, by induction we obtain the result for k = m .

Proof. of Theorem2.1
Step1
We show that the serie Xi(t) defined by 1.1 converge for any t ∈ [0, 1]d and the limiting random
function X(t) has simple paths in D.
We use the same arguments as in [3], by Theorem 3.1 of [14] we have

Xi(t) =
∑

k≥0

‖ Ψi,k ‖∞‖ Zi−k ‖∞<∞,

for any t ∈ [0, 1]d

| X(t) |<
∑

k≥0

| Ψi,k || Zi−k |<
∑

k≥0

‖ Ψi,k ‖∞‖ Zi−k ‖∞<∞

Note that

| X(m)(t)−X(t) |≤
∑

k≥m+1

| Ψi,k || Zi−k |≤
∑

k≥m+1

‖ Ψi,k ‖∞‖ Zi−k ‖∞→ 0

Since the uniform limit of a sequence of functions in D is in D, then X(t) ∈ D
Step2
We show that X(t) ∈ RV ({an}, νX(t),D0). By Proposition A2.6.II of [7], we know that the regular
variation of X(t) is equivalent to this relation for any bounded continuous f with support vanishing
outside a bounded set,

nEf(X(t)/an) =

∫
f(x)[nP(a−1

n X(t) ∈ dx)]→
∫

D0

f(x)νX(t)(dx).

By lemma2.4 we have for m > 1

nEf(X(t)(m)/an)→
∫

D0

f(x)νX(t)(m)

(dx).

As m→∞, we have this convergence, this can be proved similarly to step 2 of [3]
∫

D0

f(x)νX(t)(m)

(dx)→
∫

D0

f(x)νX(t)(dx).

Now to complete the proof of theorem 2.1 we have to establish that

lim
m→∞

lim
n→∞

supE | f(X(t)/an)− f(X(t)(m)/an) |

As in[3], the proof comes from (5.2) of [9].The theorem is entirely demonstrated.
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3 Convergence of point processes

The main result of this section is formalized through the following theorem, which discusses the
weak convergence of the sequence of point processes based on (a−1

n Xi)i∈N to a function of a PRM.

Theorem 3.1 Suppose that the sequence (Xi(t))t∈[0,1]d , i ∈ Z is given by (1.1). Assume that the

conditions H1 −H4 hold. Then, in the space Mp(D0),

n∑

i=0

εa−1
n Xi

⇒
∞∑

i=0

∞∑

k=0

εjiΨi,k
. (3.26)

where
∑∞
i=0 εji is a PRM with density νXi(.) = E

(∑
i≥0 ν ◦ h−1

Ψi,k
(.)
)
.

Before proving Theorem 3.1 we establish two lemmas. The first is due to Davis and Miosch [9],
its proof will then be omitted. The second lemma is an adaption of Proposition 5.4 in Davis and
Mikosh [9] where the sequence (Ψi,k) is not deterministic but a sequence of random processes with
continous sample paths.

Lemma 3.2 For m ≥ 1 fixed, consider the sequence of point processes

In =

n∑

i=1

εa−1
n (Zi,...,Zi−m+1)

defined on (D0)m. Then In
d−→ I where

d−→ denotes convergence in distribution of point processes
on the space Mp((D0)m) and

I =

∞∑

i=1

[
ε(ji,0...,0) + ε(0,ji,...,0) + · · ·+ ε(0,...,0,ji)

]
.

The space Mp((D0)m) consists of the point measure on ((D0)m) endowed with the topology generated
by ŵ−convergence, and

∑∞
i=1 εji is PRM(mZ) on D0.

Lemma 3.3 Assume that Zi = {Zi(t)}t∈[0,1]d , i = 1, . . . ,m be i.i.d. processes with sample paths

in D such that Z1 ∈ RV ({an}, ν,D0) and α > 0 be the index of Z1. Let Ψi = {Ψi(t)}t∈[0,1]d , i =
1, . . . ,m are random processes with continous sample paths such Ψ1 is independent of Z1 and
(Ψ1, . . . ,Ψi, Z1, · · · , Zi−1) is independent of Zi for any i = 2, . . . ,m. Suppose that there exists a
set T1 ⊂ [0, 1] containing 0 and 1, with [0, 1]/T1 countable, such that 2.16 holds,and there exists

γ > 0 such that E ‖ Ψi ‖(α+γ)/2
∞ <∞ for all i = 1, . . . ,m.

Then the sequence of point processes

N (m)
n =

n∑

i=1

ε
a−1
n X

(m)
i

d−→ N (m) =
∞∑

i=1

m∑

k=1

εjiΨk
, (3.27)

where X(m) =
∑m
i=1 ΨiZi is the finite order moving average process, and mini=0,...,m ‖ Ψi ‖∞> 0.

Proof.
By the characterization of weak convergence on Mp((D0)), we need to show that N

(m)
n (f)

d−→

8
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N (m)(f) for all continuous bounded functions f . But N
(m)
n (f) = In(foT ), where T : (D0)m+1 →

D0 is the mapping T (u) =
∑m
j=0 Ψjuj . The composition function is continuous on the support E

of the point process I in Lemma 3.2 (for the datails see [9])

Now let
A

(m)
n,i = (a−1

n (Zi, . . . , Zi−m), (Ψi,0, . . . ,Ψi,m)) (3.28)

The random vectors A
(m)
n,i defined in (3.28) have the following properties:

• The sequence {A(m)
n,i , t ≥ 1} satisfies the mixing condition D∗, by H2 and H3.

• For each m, there exists a Radon measure µm on the product space ([0,∞) × D0)2m such
that ∞∑

i=0

εi/n(.)P{A(m)
n,i ∈ .} → λ× µm.

It suffices to show that for any b > 0

∞∑

i=0

εi/n([0, b))P{A(m)
n,i ∈ .} → bµm(.).

Notice that by H2 and the definition of an given in (definition1.1), we have

∞∑

i=0

εi/n([0, b))P{A(m)
n,i ∈ ((dzi, . . . , dzi−m), (dψi,0, . . . , dψi,m))}

=

[nb]∑

i=0

P{a−1
n (Zi, . . . , Zi−m) ∈ (dzi, . . . , dzi−m), (Ψi,0, . . . ,Ψi,m) ∈ (dψi,0, . . . , dψi,m)}

=

[nb]∑

i=0

P{a−1
n (Zi, . . . , Zi−m) ∈ (dzi, . . . , dzi−m)} × P{(Ψi,0, . . . ,Ψi−m) ∈ (dψi,0, . . . , dψi,m)}

where [nb] denotes the integer part of nb. This last term has the same limit as

1

n

[nb]∑

i=0

m∑

k=0

mti,...,ti−m(dzi−k)

m∏

l 6=k
δ0(dzl)Fi,m(dψi,0, . . . , dψi,m)

which converges to

b

m∑

k=0

mti,...,ti−m(dzi−k)
∏

l 6=k
δ0(dzl)Fi,m(dψi,0, . . . , dψi,m)

where Fi,m is the distribution function of {Ψi,0, . . . ,Ψi−m}.

• For every bounded continuous function g which vanishes off a bounded set ,we have

lim
m→∞

lim sup
n→∞

∑

i,l∈Lj,m, i 6=l
Eg(A

(m)
n,i )g(A

(m)
n,l ) = 0 (3.29)

9
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where Lj,m = {(j − 1)pn + 1, ..., jpn} and pn =
[
n
m

]
. Suppose the support of g is contained

in the set {x :‖ x ‖∞> c} and K = maxx∈D0
| g(x) |

Eg(A
(m)
n,i )g(A

(m)
n,l ) ≤ P(a−1

n Zi > c, a−1
n Zl > c).

Since Zi and Zl are independent for all i 6= l, we have

∑

i,l∈Lj,m, i 6=l
Eg(A

(m)
n,i )g(A

(m)
n,l ) ≤

∑

i∈Lj,m

P(a−1
n Zi > c)

∑

l∈Lj,m

P(a−1
n Zl > c).

Using the same arguments as in the proof of Theorem 2.1, Step 4, in [10] it is easy to see
that ∑

i∈Lj,m

P(a−1
n Zi > c)

has the same limit as ∞∑

i=1

εi/n

[
(j − 1)

m
,
j

m

)
P(a−1

n Zi > c).

This last term tends to
1

m
µ(K). Therefore, (3.29) follows.

Now we can apply Theorem 1 in [10] for the sequence {A(m)
n,i , t ≥ 1}

n∑

i=1

ε
(A

(m)
n,i )
⇒

∞∑

i=1

m∑

k=1

ε(jiek,Ψi,0,...,Ψi,m) (3.30)

in Mp(D
2m

0 )
Now let

gi,m(x1, . . . , xm, u0, . . . , um) =

{
xiui, if ui <∞,

0, otherwise,

gi,m is a continuous mapping from D2m

0 into D0. By Proposition 3.2 of Davis and Resnick ([8]), this

induces a continuous mapping from Mp(D
2m

0 ) into Mp(D0). Thus from (3.30) and the continuous
mapping Theorem, we get

n∑

i=1

εa−1
n {Ψi,0Zi,...,Ψi,mZi−m} ⇒

∞∑

i=1

m∑

k=0

εjiΨi,kek
.

An application of the continuous mapping Theorem gives

n∑

i=1

εa−1
n

∑m
k=0 Ψi,kZi−k

⇒
∞∑

i=1

m∑

k=0

εjiΨi,k
.

Recall that Xi =
∑∞
i=0 Ψi,kZt−k. To establish (3.26), it suffices to show that

lim
m→∞

lim sup
n→∞

P

{∣∣∣∣∣
n∑

i=0

g

(
a−1
n

m∑

k=0

Ψi,kZi−k

)
−

n∑

i=0

g
(
a−1
n Xi

)
∣∣∣∣∣ > ζ

}
= 0 (3.31)
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for all ζ > 0 and g is a bounded continuous function, which vanishes off a bounded set. Suppose
the support of g is contained in the set {x :‖ x ‖∞> c} and K = maxx∈D0

| g(x) | , this last
probability is bounded by

P

[∣∣∣∣∣
n∑

i=0

a−1
n

(
m∑

k=0

Ψi,kZi−k

)
−

n∑

i=0

a−1
n

( ∞∑

k=0

Ψi,kZi−k

)∣∣∣∣∣ > c

]

≤ P

[∣∣∣∣∣
n∑

i=0

∞∑

k=m+1

a−1
n (Ψi,kZi−k)

∣∣∣∣∣ > c

]

≤ P

[
n∑

i=0

∞∑

k=m+1

|Ψi,k|
∣∣a−1
n Zi−k

∣∣ > c

]

≤ P

[
n∑

t=0

∞∑

k=m+1

ck
∣∣a−1
n Zi−k

∣∣ > c

]

≤ P

[
n∑

t=0

∞∑

k=m+1

ck
∣∣a−1
n Zi−k

∣∣ >
∞∑

k=m+1

ck
1−δc

]

≤
∞∑

k=m+1

nP
[∣∣a−1

n Zi−k
∣∣ > c−δk c

]
.

By (1.5) and H4, we obtain

nP
[
a−1
n |Zi−k| > c−δk c

]
→ cαδk c−α.

using H4, we obtain

lim
n→∞

lim
m→∞

∞∑

k=m+1

nP
[∣∣a−1

n Zi−k
∣∣ > c−δk c

]
→ 0.

Hence (3.31) follows, which ends the proof of the theorem.
We are now ready to state and prove the main result of this section which extends the above result
to the infinite moving case.
Proof. of Theorem 3.1
To transfer the point process convergence result of Lemma 3.3 onto Nn, it suffices to show, by
Theorem 4.2 in Billingsley [4], that for any η > 0,

lim
m→∞

lim sup
n→∞

P
(
ρ
(
N (m)
n , Nn

)
> η

)
= 0 (3.32)

and ∞∑

i=0

m∑

k=0

εjiΨi,k

d−→
∞∑

i=0

∞∑

k=0

εjiΨi,k
, (3.33)

where ρ is a metric on Mp(D0). To justify 3.33, we note that for any m ≥ 1

nEf(X
(m)
i /an)→

m∑

i=1

∫
f(Ψi,kx)mz(dx) =

∫
f(x)µ(m)(dx), (3.34)
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as m→∞
m∑

i=1

∫
f(Ψi,kx)mz(dx)→

∞∑

i=1

∫
f(Ψi,kx)mz(dx) =

∫
f(x)µ(dx). (3.35)

Then the relation 3.35 follows. For (3.33), we show that

lim
m→∞

lim sup
n→∞

P

(
n∑

i=0

‖ f(a−1
n Xi)− f(a−1

n X
(m)
i ) ‖∞> η

)
= 0. (3.36)

For this we have the same technique to establish 3.31. This is the end of the proof of Lemma 3.3.

4 Asymptotic behavior of the partial maxima

Let the maxima a−1
n maxi=0,...,nXi(t), where the Xi’s are iid copies of a regularly varying random

field X with values in D defined by (1.1). In this section we present the main result concerning
the limiting distribution of maxima a−1

n maxi=0,...,nXi(t).

Theorem 4.1 Let {Xi(t), i ∈ Z}t∈[0,1]d be the process defined by the equation (1.1). Assume that
the conditions H1 - H4 hold. Then for all x > 0,

P(a−1
n max

i=0,...,n
Xi(t) ≤ x)→ G(x) = E

(
exp(−c(x� sup

k≥0
Ψi,k)−α

)
, as n→∞ (4.37)

Proof. Applying the continuous mapping theorem to the next function :

T : Mp([0,∞)× D0) → D0

∞∑

i=0

ε(ti,ji) 7→ sup{ji, ti ≤ .}

Using Theorem 3.1, we obtain

P(a−1
n max

i=0,...,n
Xi(t) ≤ x) = P(Nn(x,∞] = 0)

→ P(N(x,∞] = 0).

= P

(
sup

i≥0,k≥0
Ψi,kji ≤ x

)

= E
(
P
(

sup
i≥0,

ji ≤ x� sup
k≥0

Ψi,k

))

= G(x).
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Flexible Semi-Markov model based on a modified Weibull
distribution with an illustration for serological malaria disease
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abstract

Time homogeneous Markov model has been successfully used to extend the classical survival analysis to the
multi-states analysis. This model assume that the evolution of the process is independent to the waiting time

in the state. In our clinical problem, this constraint is far too restrictive. The semi-Markov can be used to
extend the time-homogeneous Markov model with discrete states and continuous time, because waiting time

distributions are considered. We propose a parametric semi-Markovian model applied to the malaria
serological data. Our mainly contribution is the introduction of the modified Weibull on the semi-Markovian

process class offering some flexibilities than those often used as Weibull and exponential Weibull.

Keywords: Multi-state model, Semi-Markov process, Flexible Weibull distribution, Hazard function, Malaria
serology, longitudinal analysis.

1 Modelling semi-Markovian Process

1.1 Definition

Let E = {1, 2, · · · , s} be a finite state space. Consider the random processes (T,X) = {(Tk, Xk), k ≥
0)} in which T0 < T1 < · · · < Tk are the successive entrance times to the states X0, X1, · · · , Xk, with
Xp+1 6= Xp, ∀k ∈ E = {1, 2, · · · , s} and k represents the number of transitions. The sequences X =
{Xk, k ≥ 0} form an embedded homogeneous Markov chain which probabilities of jumping from i to j, can
be written as:

Pij = P [Xk+1 = j|X0, X1, · · · , Xk]

= P [Xk+1 = j|Xk = i] (1)

We suppose that state i is transient. As we can see, the Markov chain does not deal with the duration of
states. The waiting times are defined explicitly. These processes (T,X) are called semi-Markovian, if the
distribution of waiting times (Tk+1 − Tk) satisfies:

P [Tk+1 − Tk ≤ d,Xk+1 = j|X0, T0, X1, T1, · · · , Xk, Tk] =P [Tk+1 − Tk ≤ d,Xk+1 = j|Xk] (2)

The density probability function fij , of the waiting time in state i before passing to state j, is given by:

fij(d, θij) = lim
h−>0

P [Tk+1 − Tk ≤ d|Xk+1 = j,Xk = i]

h
(3)

1
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in which θij is the parameter vector of the waiting distribution and it’s value can vary between transitions.
Usually, we deduce from fij the corresponding hazard function:

αij = lim
∆d→0

P [d < Tk+1 − Tk ≤ d+∆d|Tk+1 − Tk ≥ dXk+1 = j,Xk = i]P [Xk+1 = j,Xk = i]

∆d
(4)

By definition, the hazard function of the semi-Markovian process corresponds to the probability of of transi-
tion to state j, given that the process was in state i for a duration d is :

λij = lim
∆d→0

P [d ≤ Tk+1 − Tk < d+∆d,Xk+1 = j|Tk+1 − Tk ≤ d,Xk = i]

∆d
(5)

Pijfij(d)

Si.(d)
with





i 6= j
Si.(d) > 0

λii = −
∑

i6=j λij(d)
(6)

Si. is the corresponding marginal survival function of the waiting time:

Si.(d) =
s∑

j 6=i

Sij(d)Pij (7)

1.2 Distribution of the waiting times:

We use on our modelling three distributions for the waiting times:

• Weibull distribution : The hazard function is monotone and is defined as αij(d) = νij

(
1
σij

)νij
dνij−1,

∀νij > 0,∀σij > 0. If νij = 1, we found the exponential distribution which is the distibution of the
waiting time of the time-homogeneous model (without memory).

• Exponential or Generalized Weibull distribution assume that hazard function is able to fit a U or inverse

U shape: αij(d) = 1
θij

(
1 +

(
d
σij

)νij)
(

1
θij

−1

)
νij
σij

(
d
σij

)νij−1
. We found the Weibull distribution

when θij = 1.

• Flexible Weibull distribution consider non monotonous hazard function and so the distribution un-
der consideration differs forms considered by Gurvich et al. [1]. Note that when σij = 0, if we set
νij = log (γij), the Flexible Weibull distribution becomes exponential and it may be regarded as a gen-
eralization of the Weibull with a hazard function given by: αij(d) = (νij + σij/d

2) exp (νij + σij/d)

We incorporate covariates in our modelling by assuming the risk proportionality as Cox [2] on the wait-
ing time. On this case, the hazard function becomes: αij(d|Zij) = αij0(d) exp

(
β

′
ijZij

)
, with Zij =

(Zij1, Zij2, · · · , Zijlij )
′

is the lij covariates and βij the regression coefficients specific to the transition i→ j
(i 6= j).

1.3 Parameters estimation

Let a sample of n subjects, denoted by h(h = 1, 2, · · · , n). We suppose that the h-th subject has been
observed nh times and it moves nh − 1 times into different states at times T (h)

1 < T
(h)
2 < T

(h)
3 < · · · <

T
(h)
nh−1. At these times, it occupies the state X(h)

1 , X
(h)
2 , · · · , X(h)

nh−1 with X(h)
k 6= X

(h)
k+1. At the last time of

the follow-up, T (h)
nh of the h-th subject can move again, or be censored and its contribution on the likelihood

is equal to:

V (h) =

nh−1∏

j=1

P
X

(h)
j−1,X

(h)
j

f
X

(h)
j−1,X

(h)
j

(T
(h)
j − T (h)

j−1)×
[
P
X

(h)
nh−1,X

(h)
nh

f
X

(h)
nh−1,X

(h)
nh

(T (h)
nh
− T (h)

nh−1)

]δh

×
[
S
X

(h)
nh−1.

(T (h)
nh
− T (h)

nh−1)

]1−δh

(8)
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where δh = 0 if the subject is censored and 1 if a transition is observed. The total likelihood is the product of
all contributions: V =

∏n
h=1 V

(h). We use the Likelihood Ratio Statistic (LRS) to evaluate the parameters
estimation.

2 Application

2.1 Model schema and data

State 1: Seronegative
λ12−−−−−−−−−−−−−−→

State 2: Seropositive
λ21←−−−−−−−−−−−−−−

Figure 1: Two-state semi-Markov model for P. falciparum malaria serological markers

The population for this study was inhabitants from a rural area in Senegal, Dielmo located in west Dakar.
These data are collected as part of the Dielmo project initiated in 1990 by an tripartite agreement between
the Institute Pasteur of Dakar (IPD), the Institute of Research and development (IRD) and the ministry of
health of Senegal. Subjects are included after giving their consent of their legal tutor [3]. Blood sample
were collected during the lowest transmission season and they were preserved in laboratory. Our sample is
therefore constituted of 350 persons, representing a total of 1504 observations (serum). Clinicians define two
reversible states of reactivity characterized by the Figure 1.

2.2 Results

The results show that the Weibull is so restrictive to the transition 1− > 2, θ12 is statistically different to
1. Therefore for the transition 2− > 1, the exponential Weibull is not adapted. All parameters of the flexible
Weibull is significant (p < 0.0001). The Flexible Weibull seems most adapted than the exponential Weibull
for all transition. The Kolmagorov-Simirov test confirms this result.

Loi Transition σij(p) νij(p) θij(p) D AIC

1− > 2 26.32 (< 0.0001) 1.42(< 0.0001) - 0.987
Weibull 2079.87

2− > 1 0.013 (< 0.0001) 0.13 (< 0.0001) - 0.604

1− > 2 7.03 (0.156) 0.696 (0.041) 4.59 (0.152) 0.209
Generalized Weibull 2119.82

2− > 1 0.025 (< 0.0001) 0.38 (< 0.0001) 554.28(< 0.0001) 0.443

1− > 2 15.59 (< 0.0001) 0.023 (< 0.0001) - 0.177
Flexible Weibull 1867.68

2− > 1 0.001 (< 0.0001) 0.107 (< 0.0001) - 0.396

1− > 2 7.003 (< 0.0001) 0.695 (< 0.0001) -
Mixte model 2075.87

2− > 1 0.023 (< 0.0001) 0.180 (< 0.0001) 538.27 (< 0.0001)

Table 1: Estimation of parameters of the waiting times with the p-value of the LRT, the AIC criterion of models and statistic
distance of the Kolmagorov-Simirov test.

67 sciencesconf.org:sada2016:117972



References
[1] Gurvich MR, Dibenedetto AT, Rande SV. A new statistical distribution for characterizing the random length of brittle materials.

J Mater Sci, 32:2559–64, 1997.

[2] Cox D.R. . Regression models and life tables (with discussion). J. R. Stat. Soc. B, 34:187–220., 1972.

[3] Trape, J. F. and Rogier, C. and Konate, L. and Diagne, N. and Bouganali, H. and Canque, B. and Legros, F. and Badji, A. and
Ndiaye, G. and Ndiaye, P. and et al. The dielmo project: a longitudinal study of natural malaria infection and the mechanisms
of protective immunity in a community living in a holoendemic area of senegal. Am J Trop Med Hyg, 51(2):123–37, 1994.

68 sciencesconf.org:sada2016:117972



Genome-wide association study (GWAS) for malaria phenotypes from a longitudinal 

study in Senegal 

Abstract 

Malaria is an infectious disease caused by Plasmodium parasites. It is a major problem of 

public health in sub-SaharanAfrica. The severity and frequency of this disease depends not 

only on known individual and environmental factors like age, sex and transmission intensity; 

but also on unknown genetic aspects. Thus, to determine the susceptibility or resistance of 

individuals to uncomplicated malaria, longitudinal surveys are useful as they allow finding 

confirmed individual tendencies based on several sampling. Here, we studied data from a 

long-term malaria disease survey in two family-based cohorts inDielmo and Ndiopresearch 

project in Senegal.  

The main objective of this study is to identify human genetic factors associated with malaria 

disease using these Senegalese cohorts. 

A genome-wide association study (GWAS) was performed on malaria datafrom 481 

individuals living in Dielmo and Ndiop villages and whose genotyping was done.The studied 

phenotype was the maximum Plasmodium falciparumparasite density per clinical episode. 

Genotypes datawere generated for 719,656 SNPs (Single Nucleotide Polymorphism). For 

quality control, we excluded from the analysis SNPs with a MAF (Minor Allele Frequency) 

lower than 10%, or a call rate (% of genotyped individuals forthe SNP)lower than 95% or a P-

value lower than 10
-4 

for the Hardy-WeinbergEquilibrium test.An additive model was 

considered for each SNP. Association tests were performed using Generalized linear Mixed 

Models incorporating between individuals kinship matrix, this allowedto account for 

correlated random effectsdue to genetic relationships among individuals and repeated 

measures. Using this model, the phenotype was regressed on each of the 510,803 SNPs 

satisfying quality controlcriteria and adjusted on age, sex, transmission intensity and duration 

of exposure. Associations were considered statistically significant if P-valuewas lower than 

9.78x10
-8

,theBonferroni corrected threshold of significance. 

Any SNP was found significantly associated with the parasite density. However, 5 SNPs 

showed moderated association, 1 SNPhad P-value less than10
-6

 and 4 SNPs had P-value 

between 10
-6

 and 10
-5

. 

Keywords:Malaria, Genetic association, Repeated measures. 
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Goodness-of-fit tests based on non- and

semi-parametric estimation of the

proportional excess hazards model
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c Université de Bourgogne, Inserm U866 - Registre bourguignon des cancers digestifs

21079 Dijon, France, valerie.jooste@u-bourgogne.fr

Survival probability of cancer patients has been used for many years as one of the main

tools for evaluation of therapeutic advances. With improved treatments and prognosis,

studies often now have long follow-up times and it is common to have a substantial pro-

portion of deaths from causes other than the cancer under study. In the usual situation,

the cause of death is unavailable or unreliable. Hence the field of relative survival or

excess hazard has developed in which observed deaths are compared with those expected

from general population life tables. See for instance Bossard et al. (2013) or Lambert

et al. (2010, 2015) for recent illustrations of these methods. Relative survival analysis

assumes that the hazard function of the lifetime of interest is the sum of the general

population hazard function (known) and of the excess hazard (unknown improper haz-

ard function), both possibly depending on covariates. It means that if we assume that

U is the lifetime without disease and V is the lifetime with disease (independent of U)

then the observed lifetime is T = min{U, V } which implies for t ≥ 0:

λobs(t) = λpop(t) + λexc(t), (1)

where λpop is known from life tables and λexc has to be estimated. One specificity of

these models is that the excess hazard rate function λexc do not integrate to infinity,

that is
´∞
0 λexc(t)dt <∞. As a consequence when t→ +∞ we have

Sobs(t)

Spop(t)
≡ exp(−Λobs(t))

exp(−Λpop(t))
= Sexc(t) ≡ exp (−Λexc(t))→ π,

1
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where π is called the cure rate. In the above formula, whatever the risk function

λ ∈ {λobs, λpop, λexc}, we note the corresponding cumulative hazard function by Λ(t) =
´ t
0 λ(s)ds. From the previous results it is clear that Sexc(t) = π+(1−π)S(t) where S is a

survival function, thus it means that V follows a cure mixture model. Most of the time,

we have to face the problem of right censoring, thus instead of observing T we observe

(X,∆) where X = min{T,C} and ∆ = 1{T≤C}. Here C is a right censoring time.

Generally, in addition to (X,∆) are observed covariates Z (for instance age, sex,

disease stage, etc.). In this case all the above formula are defined conditionally on

Z = z, then we have

λobs(t|z) = λpop(t|z) + λexc(t|z), (2)

leading to Sexc(t|z) = π(z) + (1 − π(z))S(t|z). In this talk we consider that the ex-

cess hazard functions satisfies the proportional hazards assumption, that is λexc(t|z) =

exp(βT z)λ0(t) where β is an unknown Euclidean regression parameter and λ0 an un-

known baseline excess risk function.

If we assume a parametric model for λexc in (1) or for λ0 in (2) standard asymptotic

results can be established for the maximum likelihood estimators (MLE) using martin-

gale methods à la Anderson et al. (1993). Using standard nonparametric estimators

which have been derived for model (1) by Andersen and Vaeth (1989) (see also Pohar

Perme et al., 2012) we show that for a regular parametric model, at the usual root-of-n

rate, the difference of the nonparametric estimator of Λexc and its MLE converges weakly

to a centered Gaussian process whose the covariance can be estimated consistently. We

use this result to built several distance–based goodness-of-fit procedures for testing the

assumption that Λexc belongs to a parametric family under right censoring.

On the same spirit, for the semiparametric proportional excess hazard model (2)

Sasieni (1996) developed an semiparametric asymptotic theory that we use for testing

the fact that the baseline excess hazard rate function λ0 belongs to a parametric family.

Our results are illustrated through a Monte-Carlo study and their extension to alter-

native semi-parametric models (based for instance on the additive hazards assumption,

see for instance Lin and Ying, 1994) is also discussed.
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Abstract -- Computer grids are systems containing heterogeneous, autonomous and geographically 
distributed nodes. The management of these resources is the works of the meta-scheduler, who allocate 
work the nodes that are part of a grid, such as clusters, which in turn, have their own local schedulers. In 
this work we propose a new multi-agent distributed meta-scheduling model. Our model takes one hand 
benefit from the flexibility of task allocation mode of acquaintances network to reduce the complexity of 
communication in decision-making, and secondly of the double auction sales to bring a mutual satisfaction 
between customers and resource providers. The Multi-Attribute Utility Theory (MAUT) is used for a 
more realistic gain of both. After simulation, through comparative performance analyzes, we show that 
our model has better contribution in terms of customer and supplier satisfaction than five main heuristic. 
Other qualitative assets as fault tolerance have to be mentioned.  
Keywords: Grid computing, Meta-Scheduling, Resource allocation, Multi-Agent Systems, Acquaintance network, 
Double auction. 
Résumé -- Les grilles informatiques sont des systèmes contenant des nœuds hétérogènes, autonomes et 
géographiquement répartis. La gestion de ces ressources est du ressort du méta-ordonnanceur, qui alloue 
les travaux aux nœuds de la grille, tels que les grappes, qui à leur tour ont leurs propres ordonnanceurs 
locaux. Dans ce travail nous proposons un nouveau modèle multi-agents de méta-ordonnancement 
distribué. Notre modèle tire profit d'une part de la souplesse du mode d'allocation de tâches par réseau 
d'accointances pour réduire la complexité des communications dans la prise de décision, et d'autre part de 
la vente aux doubles enchères en vu d'une satisfaction mutuelle entre clients et fournisseurs de ressources. 
La théorie de l'Utilité Multi-Attributs (TUMA) est utilisée pour un meilleur gain de chacun. Après des 
simulations, à travers des analyses comparatives des performances, nous montrons que notre modèle a un 
meilleur apport en terme de satisfaction tant client que fournisseur cinq heuristiques principaux. D'autres 
apports qualitatifs tels que la tolérance aux fautes sont à mentionner. 
Mots clés : Grille informatique, Méta-ordonnancement, Allocation de ressources, Système Multi-Agents, Réseau 
d'accointances, Vente aux doubles enchères. 
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HIERARCHICAL KERNEL APPLIED TO MIXTURE MODEL FOR
THE CLASSIFICATION OF BINARY PREDICTORS
Seydou N. SYLLA 1,2,3, Stéphane GIRARD 1, Abdou Ka DIONGUE 2

Aldiouma DIALLO 3 & Cheikh SOKHNA 3

1 Inria Grenoble Rhône-Alpes & LJK, France
2 LERSTAD-UGB, Saint-Louis, Sénégal

3 URMITE-IRD, Dakar, Sénégal,
Contact: seydou-nourou.sylla@ird.fr

Resume Diagnosis systems often use structured data. These data have a hierarchical structure
related with the questions asked during the interview with the doctor or the survey taker in charge
of verbal autopsies. The hierarchical nature of these questions leads to consider this aspect when
analyzing medical data. Thus, it is recommendable to choose a similarity measure that takes
into account this issue to better represent the reality. We propose the introduction of a kernel
taking into account the hierarchical structure and of the data interactions between sub-items
in supervised binary classification methods This kernel can integrate the knowledge from the
application domain relative to how the features of the problem are organized. In general, we
focus on problems whose features can be hierarchically structured. As part of this work, these
hierarchies are represented by trees on two levels. Our main contribution is the proposal of a
kernel that simultaneously takes into account the hierarchical appearance and the interaction
between variables. The proposed kernel has shown a good classification performance on a
complex set of medical data including a high number of predictors and classes.

1 Construction hierarchical kernel associated for binary ob-
servations

1.1 Structure Data and notations:

In a medical survey, the questions are divided into two categories: main and secondary questions
Secondary questions are asked only if the answer to the main question is positive. By formalizing
this concept, the variable Xj represents the answer to the main question j. For each given Xj

there are qj responses to secondary issues noted by the sub-variables Zj
1 , . . . , Z

j
qj

. The randoms
variables Y = (Yk, k = 1, . . . , K) define the explanatory variables representing the physician’s
conclusion (cause of death)

In addition, the following lemma sets the relationship between the levels of the tree.

Lemma 1.1 Let Zj
` a sub-variable of the variable Xj , then

1
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• ∀` ∈ {1, . . . , qj},P(Zj
` = 1|Xj = 0) = 0,

• ∃ ` ∈ {1, . . . , qj} such as P(Zj
` = 1|Xj = 1) = 1.

Moreover

Xj = max{Zj
1 , . . . , Z

j
`} = 1−

qj∏

`=1

(1− Zj
` ),

with qj the number of the sub-variables of Xj .

1.2 Hierarchical Kernel for binary data

The goal is to build a kernel taking into account the hierarchical data structure and the interaction
of sub-variables. We focus on issues where the explanatory variables of a data set can be
structured in a tree. In this structure, the characteristics of sub-variables are located at the bottom
level of the tree. The first level identifies the variables called principal to which the sub-variables
belong. These two levels are connected by the relationship described in Lemma 1.1.

Our principle is based on the transformation of the dissimilarity between two main variables
Xj and Xj′ of a combination of dissimilarities between the main variables Xj and Xj′ and their

respective sub-variables Zj
` , ` = 1, . . . , qj and Zj

′

`′
, `

′
= 1, . . . , q

′
j .

Calculing ‖x− x′‖2 was :

‖x− x′‖2 = SC(z, z′) +R.

with

SC(z, z′) =
p∑

j=1

qj∑

`=1

∑̀

k=1

∑

|i|=k
s2kji

and skji =
(
zji1 . . . z

j
ik
− z′j

i1
. . . z

′j
ik

)
, |i| = k denotes the size of the multi-index i = (i1, . . . , ik)

and R the sum of double product.

A dissimilarity measure is defined for all γ ∈ [0, 1] by:

D((x, z), (x′, z′)) = γSC(z, z′) + (1− γ)R = (1− γ)‖x− x′‖2 + (2γ − 1)SC(z, z′).

By asking:

• Dx(x, x
′) = ‖x− x′‖2,

• Dz(z, z
′) = SC(z, z′),

2
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Previous dissimilarity measure can be rewritten:

D((x, z), (x′, z′)) = (1− γ)Dx(x, x
′) + (2γ − 1)Dz(z, z

′).

Using the kernel construction method proposed [1], introducing the kernel:

κSGH((x, z), (x
′, z′)) = κx(x, x

′)1−γκz(z, z
′)2γ−1 (1)

where,

• κx(x, x′) = exp(−‖x− x′‖2/2σ2
x) the RBF kernel,

• κz(z, z′) = exp(−SC(z, z′)/2σ2
r).

Interactions sub-variables: The interactions of sub-variables Z are considered have to order
r with the following kernel:

κz(z, z
′
) = exp

(
SC(r)(z, z

′)

2σ2
r

)
(2)

where

1. r the number of interactions,

2. SC(r) in the truncated version of r on SC:

SC(r)(z, z
′) =

p∑

j=1

qjsc(r,j)

3. sc(r,j) the interactions between r sub variables j defined by

sc(r,j) =
r∑

k=1

∑

|i|=k
s2kji

=
r∑

k=1

∑

|i|=k

(
zji1 . . . z

j
ik
− z′j

i1
. . . z

′j
ik

)2

3
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Remarks For some values of γ, it appears that the RBF kernel can be found for binary data in
some cases.
If κx = κRBF then

• γ = 1
2
⇒ κSGH ((x, z), (x

′, z′)) = κRBF(x, x
′),

• γ = 1 et r = 1⇒ κSGH ((x, z), (x
′, z′)) = κRBF(z, z

′
) ,

• γ = 2
3

et r = 1

⇒ κSGH ((x, z), (x
′, z′)) = κRBF((x ∪ z), (x′ ∪ z′

)).

2 Experiments

2.1 Datasets

Verbal autopsy Data We focus on data measured on deceased persons during the period from
1985 to 2010 in the three IRD (Research Institutr for Development) sites (Niakhar, Bandafassi and
Mlomp) in Senegal. The dataset includes n = 2.500 individuals (deceased persons) distributed
in K = 18 classes (causes of death) and characterized by p = 100 variables (symptoms).

2.2 Comparison with levels of interaction

We note that the classification rates associated with interaction r = 3 are higher than with the
interaction r = 1 and r = 2. For γ = 0.5, the classification rate is invariant with respect to
the order of the interaction. This is explained by the fact that for γ = 0.5, the proposed kernel
does not take into account the interactions and is calculated only using the main variables. The
highest classification rate is obtained for γ = 0.67 with an interaction equal to r = 3. Table 1
summarizes the classification rate depending on the level of interaction and the value of γ.

4
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interactions r= 1 r = 2 r = 3
γ CCR CCR CCR CCR CCR CCR

(learning set ) (test set set) (learning set ) (test set set) (learning set ) (test set set)

0.5 76.21 67.44 76.21 67.44 76.21 67.44
0.6 83.50 74.33 85.77 76.48 86.59 77.07
0.67 84.20 74.92 86.50 76.95 86.93 77.19
0.7 84.53 75.25 86.63 77.00 86.93 77.14
0.8 84.32 74.95 84.94 75.76 85.10 75.57
0.9 83.15 73.72 83.97 74.50 83.01 73.21
1 71.36 61.52 75.09 64.91 74.72 64.59

Table 1: Summary of correct classification rate for γ ∈ [0.5, 1]

References

[1] S.N. Sylla, S. Girard, A.K. Diongue, A. Diallo, and C. Sokhna. A classification method for
binary predictors combining similarity measures and mixture models. Dependence Modeling,
3:1090–1096, 2015.
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Abstract 

Objective  

To critically review, the concept of interaction in factorial design and its relation to 

epidemiological interaction (synergism). 

Methods 

Systematic review using dichotomous risk factors to establish a two-level, two factor design and 

showing the failure of some known concept(s) to explain interaction when more than two risk 

factors are involve. Then, reviewing an extension to a design having three risk factors. A 

binomial distribution model for the probabilities of different levels combinations of the risk 

factors was defined (Hogan et al, 1978), since the factors are dichotomous (binary). 

 

Results 

It was established as in literature that, the epidemiological interaction can be explained by the 

interaction concept in factorial design. The case of only two factors using dichotomous risk 

factors was obtained. Hogan et al measure also known as the Interaction Contrast of Disease 

Rate (I.C.D.R.) fails when extended to a case of three factors. A generalization to three factors 

and beyond (Rao and Enterline, 1984) was obtained and recommendation for further studies 

given. 

 

Conclusion 

This review discusses the overall concept of epidemiologic interaction and its analogy with 

interaction in factorial design.  The establishment of interaction contrasts between two 
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dichotomous factors has shown the relation between factorial interaction and epidemiologic 

interaction and further extension to three- factor further supports this analogy.  

Keywords: Interaction, Interaction Contrasts of Disease Rate, Risk Factors, Dichotomous 
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ABSTRACT 

The aim of this work is to provide a formal and organized study of the effect of the nature 

of data and cluster structure on the performance of K-means and K-medoids clustering 

methods.  

A cluster validation method called Silhouette analysis is used to assess the quality of 

cluster partitions created by both methods. An illustration on how Silhouette analysis 

could be used to determine the optimal number of clusters in a data set is presented. 

Results obtained reveal that the performance of K-means is at its peak with data in which 

clusters are of relatively uniform sizes while the K-medoids method tends to perform 

better than K-means when the input data have varied cluster sizes. 

 

Keywords: Cluster Analysis, Cluster Validation,  Distance Functions, K-means, K-

medoids, Silhouette Analysis 
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Title 

Large scale prediction modelling with multiple cohorts 

 

Abstract 

Classical prediction methods such as Fisher’s linear discriminant function were designed for small-scale 

problems, where the number of predictors N is much smaller than the number of observations n. 

Modern scientific devices often reverse this situation. A microarray analysis, for example, might include 

n = 120 subjects measured on N = 10, 000 genes, each of which is a potential predictor. The subject 

might be from different cohorts, even adding another dimension to the problem. Building a prediction 

model for such datasets is a challenging task. In my talk I will demonstrate one way of solving this 

problem using an empirical Bayes approach that employs some shrinkage. This shrinkage introduces 

some bias to the estimator of effect sizes of each predictor and reduce the variance of prediction.   
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Abstract 

 The Sahel is known as a hotspot of climate change with high social and environmental vulnerability. 
Agriculture in the Sahelian countries has to deal with this evolution to fulfill the food security of the growing 
populations. The use of plant species of high phonological plasticity, as the date palm (Phoenix dactylifera L., 
Pintaud et al, 2013) is one of the responses to the difficult soil and climatic conditions for which few plants are 
adapted. 

 The date palm is a versatile plant. Mainly grown for its fruit, it has a great socio-economic importance 
in arid areas including the Arabian Peninsula, North Africa and the Middle East (Munier, 1973). Introduced in 
many parts of the world, including Asia, Australia, the US, Spain, it is present in the Sahel, particularly in Niger, 
Mali, Chad, Mauritania, Djibouti. In Niger, the date palm cultivation is established in two areas, one traditional 
in the Sahara in the north and the other more marginal in the Sahel to the south. 

 In the Manga (South-eastern Niger), the palm groves are recent settlements of a few hundred or 
thousand plants in oasis basins. The introduction of date palm there dates from the early 20th century, probably 
due to unexpected consequences of the mass famine "Gandebeeri" of 1913- 1914. Unlike in northern Niger and 
other traditional production zone of dates, Sahelian date palm is of special interest the double flowering (Jahiel 
and Blay 1994). 

 A better knowledge of the local varietal diversity of date palms Southeast of Niger and associated local 
knowledge should enable to better direct agricultural research needs for the improvement of this species with 
high phenological plasticity, facing the consequences of change climate in the Sahel. We propose in this abstract 
an exploration of practices and local knowledge around the date palm oasis basins of South-eastern Niger and an 
inventory of landraces (locally identified group of trees considered the same without recourse to the distinction 
genome) to orientate agricultural research and improvement of this species. 

 To do this, we investigated in 14 villages (6 in the department Goudoumaria and 8 in the Gouré) 
representative of the Manga region to cover the three types of basins (water basin flush, intermediate water basin 
and basin in deep water) found there. We conducted 30 interviews with palm producers (in the three ethnic 
groups: Kanuri, Hausa and Fulani). The information recorded during each interview was the following: Identity 
of the basin or village; identity of the producer; landraces date palms; agricultural practices; date production; the 
use of income from the production of dates. Qualitative data were processed in Multiple Correspondence 
Analysis with R software. We used descriptive statistics to calculate some averages that were used for 
comparisons. 

 At total, 19 varieties were identified by the Manga farmers generally using the standard color of the 
fruit, sometimes fruit quality, the biology of the plant, the origin from the plant or the sex concerned. One 
variety-population can have several synonymous names in one language or in several languages; it is the case in 
the population variety 'Massara' (Hausa) or 'Wale' (Kanuri language). The most encountered variety in all basins 
is the variety Massara '(yellow fruits in Khalal course). The populations varieties 'Balma' and 'Massara' seem 
most popular with farmers in view of the market value of the dates they produce. Moreover, the names of 
varieties-populations that we identified in Manga are different from those of the traditional production area of 
dates in northern Niger (Bilma, Air, Kawar and Djado), but closer to those encountered in the Damagaram 
border region further to the West. 
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 Our results also show that Goudoumaria farmers have mastered good agricultural practices (pollination, 
thinning or protection of inflorescences), allowing them to have better quality and good market value of fruits 
while those in Goure seem to be indifferent to such practices. Few of the farmers who make them and it concern 
only a few palm trees. They occupy much more for vegetable crops than cultivation of the date palm that they 
still consider a picking product.  

 Most of the farmers in intermediate water basins dream strongly the expansion of their palm groves. 
Nevertheless, some farmers at flush water bowls, like those of deep water basins have a particular perception of 
the consequences of palm water requirements compared to the hydrological regime of the basin. Therefore, they 
do not wish to increase the population of date because they think that the date palm is the main cause of sagging 
groundwater. For them, the current middle basins were once with flush water: when the date palm was 
introduced in these basins, its great capacity for evapotranspiration would have caused the collapse of the 
groundwater to the intermediate stage and even deeper. 

 Furthermore the Manga palms perform two production campaigns per year. The first campaign covers 
over 45% of date palms in production and runs from September to March (dry season) and the second campaign 
relates to almost all of the palm trees in production and takes place from February in July (rainy season). The 
production of the second season is much higher than that of the first campaign. However the price per kilogram 
of dates is much higher even 4-6 times greater than that of dates produced in the second campaign. The dates of 
that campaign are of poor quality for the conservation because of the rains that disrupt their maturation and 
therefore leading to their slump in the absence of preservative systems. Although the date occurred during the 
dry season is much better, it is nevertheless in competition on the local market dates from Algeria. 

 Our results show that considering the bad seasons known since the 1970s in the Sahel, the Kanuri use 
almost all the income of the date palm for purchases to cover food needs following the exhaustion of harvests of 
rainfed cereals. Accordingly, the cultivation of dates is becoming increasingly important in Kanuri because of 
the income it generates. The Fulani, generally herders, are less interested in agriculture to cover their food needs. 
Similarly, Hausa traders have, in addition to agriculture, commerce enabling them to obtain supplies of grain. 
This is why, their income from the date palm is also used to purchase livestock and the payment of the 
agricultural workforce. 

 In conclusion palm cultivation is now regarded by farmers as an important source of income, even if the 
water management stress arises in some basins. The other raised constraint is the low quality of dates of the 
second campaign despite this season is much more productive. Finally, sustainable development of the date palm 
in a context of climate change in the Sahel must be based on the selection of early varieties or producing dates 
that mature even in the rainy season, as well as strengthening producer technical capacity. 

Keywords: Sahel, Niger, Phoenix dactylifera, variety-population, local knowledge, climate change. 
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Abstract 
 
The linear mixed effects model has become a widely used method for analysing longitudinal 
data due to its ability to overcome some limitations found using standard statistical methods. In 
this study, we (i) assessed the performance of 5 fit statistics (AIC, BIC, HQIC, CAIC and AICC) 
to determine the correct within-subject covariance structure (WSCS) in longitudinal data 
analysis and (ii) investigated the consequence of misspecification of WSCS. Firstly, a 
simulation study was achieved in 192 cases taking into account six characteristics of the data 
sample (sample size, measurement periods, magnitude of growth parameter, size of G matrices, 
covariance structure and distribution of the within-subject error). For each combination of these 
parameters, the hit rate of each search statistics is computed and help to compare the 5 fit 
statistics according to their performance. At a second step, based on 32 restricted simulation 
conditions, the effect of misspecification in WSCS was assessed by computing the mean 
relative bias and mean relative errors of the coefficients of fixed effects and random 
components. Results showed an overall best performance of the HQIC, BIC and CAIC for 
searching first order autoregressive [AR(1)] and first order moving average [MA(1)] covariance 
structures. With regards to first order autoregressive moving average [ARMA(1,1)] covariance 
structure, AIC, AICC and HQIC presented the overall best performance. Moreover, results 
obtained from the simulation study found no bias in the fixed effects, with however some bias 
when the magnitude of growth parameter tended to be small. On the contrary, there was 
evidence of bias in the random components of the model regarding the relative bias. 
 
Keywords: longitudinal data, within-subject covariance structure, fit statistics, 
misspecification, simulation. 
 
 
1. INTRODUCTION 
 
Longitudinal data (LD) constitute one example of a hierarchical structure, with repeated 
observations over time nested within individuals (Steele, 2008). Because standard statistical 
models fail to recognize hierarchical structure, they become inappropriate methods to deal with 
these types of data (Singer, 1998; Goldstein, 1999; Snijders and Bosker, 1999; Maas and Hox, 
2004). Contrary to standard statistical models, linear mixed effects models (LMEM) recognize 
the existence of such data hierarchies by allowing for residual components at each level in the 
hierarchy. Therefore, LMEM have widely been used to analyze LD (Kwok et al., 2007; Barnett 
et al., 2009; Murphy and Pituch, 2009; Lee, 2010; Brandon, 2013; AL-Marshadi, 2014) where 
the measurement occasions are nested within cases (e.g. individual or subject). 
In LD, observations are made at multiple time points on each subject. Thus, measures on the 
same subject at different times tend to be correlated (Bellavance et al., 1996; McCulloch, 2003). 
Moreover, measures taken close together in time are more highly correlated than measures 
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taken far apart in time (Littell et al., 2000; Hedeker and Gibbons, 2006; Gibbons et al., 2009). 
Hence, taking this dependency into account by specifying right covariance structure for 
observations within each subject becomes an important issue (Kwok et al., 2007; Barnett et al., 
2009; Murphy and Pituch, 2009; Lee, 2010; Brandon, 2013; AL-Marshadi, 2014). Specifically 
in longitudinal data analysis (LDA), information about change in the response variable over 
time is reflected only in the covariance matrix of the within-subject residuals (Hedeker and 
Mermelstein, 2007). Some fit statistics are often used to determine the suitable covariance 
matrix structure according to the observed data (Singer, 1998; Keselman et al., 1999; Littell et 
al., 2000; Ferron et al., 2002; Eyduran and Akbas, 2010; Yanosky, 2007; AL-Marshadi, 2014). 
These are Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Hannan 
and Quin Information Criterion (HQIC), Consistent Akaike Information Criterion (CAIC) and 
Akaike Information Criterion - Corrected (AICC) [Yanosky (2007)]. Choosing an accurate 
criterion among those cited above constitutes an important issue for users of LMEM in LDA 
due to misleading results from covariance matrix misspecification in statistical modeling (AL-
Marshadi, 2014). 
Moreover, although the LMEM allow for flexible modeling of LD, the simulation research 
literature is not nearly as extensive as standard methods. Few research works (Ferron et al., 
2002; Kwok et al.., 2007; Murphy and Pituch, 2009; Lee, 2010; Brandon, 2013) to date started 
exploring effect of misspecification of within-subject error covariance. Unfortunately, apart 
from Brandon (2013), these studies were implemented under perfect model conditions (i.e. 
normally distributed random effects and residuals). However, it is known that real world data 
are rarely normally distributed and can deviate quite substantially from a normal distribution 
(Micceri, 1989). Therefore, this study aims to (i) assess the performance of 5 fit statistics in 
identifying the correct within-subject covariance structure in LDA and (ii) investigate the 
consequence of misspecification of within-subject covariance structure in LDA. 
 
 
2. METHODS 
 
Factors considered for the simulation are the sample size (50, 100, 150 and 200), the 
measurement periods (5 and 8), the magnitude of growth parameter (i.e. the mean of the 
individual slopes) so that β1=0.05 and β1=0.16, the size of G matrix (small [τ00=0.1 and 
τ11=0.05] and medium [τ00=0.2 and τ11=0.1]) and the covariance structure (true R matrix) for 
generating the data [AR(1), MA(1) and ARMA(1,1)]. The sixth factor taken into account is the 
distribution of the within-subject error: Normal or Chi-square with 1 degree of freedom. Thus, 
a total of 192 combinations of factors have been considered. To avoid finding a single extreme 
data condition, five hundred replications were generated for each combination of factors using 
Monte Carlo procedure. Each dataset was then analyzed using four separate specifications of 
the R matrix (ID, AR(1), MA(1) and ARMA(1,1)). Coefficient β0 i.e. γ00 was fixed to 0.10 for 
all combinations of factors. Three parameters were necessary to specify the three chosen error 
covariance structures: σ2 (variance of the within subject errors), θ  (i.e., moving average 
coefficient) and ϕ (i.e., autoregressive correlation coefficient). σ2 was set as 2 and coefficients 
θ and ϕ were fixed to 0.50 and 0.8 (respectively). 
 
The hit rate of each search statistics was used as the major criterion. A correct hit in model 
selection was represented by an event that the smallest fit index value for the hypothesized 
covariance structure matches the true covariance structure. Fit index hit rate for all investigated 
conditions and within-subject covariance structures was computed respectively. The fit index 
formulas are from Yanosky (2007). Moreover, the convergence rate of the analyses when 
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specifying different R matrices regardless of the true R matrices was also computed. It is 
defined by an event that a model with a given R matrix specification converges. 
 
32 restricted simulation conditions were used to assess the effect of misspecification in WSCS 
by computing the mean relative bias and mean relative errors of the coefficients of fixed effects 
and random components.  
 
3. RESULTS 
 
3.1. Performance of information statistics on searching for the correct within-subject 

covariance structure 
 
AR(1) covariance structure 
 
The results of ANOVA conducted on fit statistics hit rates to investigate the impact of design 
factors reveal that all fit statistics hit rates were significantly affected by measurement periods 
and G matrix, except HQIC for which, only G matrix has significant effects (not presented). 
Moreover, the interaction between both factors were significant, meaning that the observed 
difference between measurement periods depend on G matrix and vice-versa. 

From the mean values of fit statistics performance (Table 2), the lowest values of BIC, CAIC 
and HQIC hit rate were found for 5 measurement periods while the lowest values of AIC and 
AICC hit rate were found for 8 measurement periods. Regarding the G matrix, the highest 
values for all hit rates were found for small size of G matrix (40 % of the time for AIC and 
AICC, 53 % of the time for BIC, 52 % of the time for CAIC and 49 % of the time for HQIC).  
 
MA(1) covariance structure 
 
From the results of ANOVA performed on the five fit statistics hit rates to check the impact of 
design factors, it appears that the G matrix was the considered factors that feign all hit rates (not 
presented). Moreover, BIC and CAIC was moderated by the sample size. 

From the mean values of fit statistics performance (Table 2), BIC and CAIC were able to 
correctly classify the covariance structure 57 % and 54 % of the time (lowest values) with 50 
individuals (respectively) and 86 % and 85 % of the time (highest value) with 200 individuals 
(respectively). With regards to AIC and AICC, the lowest hit rates were found for 200 
individuals (50 % and 51 % of the time respectively) and the highest hit rates were found for 
150 individuals (85 % and 86 % of the time respectively). 63 % (50 individuals) was the lowest 
HQIC hit rate and 88 % (100 individuals) was the highest HQIC hit rate. Regarding the G 
matrix, the highest values for all hit rates were found for small size of G matrix.  
 
ARMA(1,1) covariance structure 
 
The results of ANOVA applied on fit statistics hit rates to investigate the effect of design factors 
indicate that only measurement periods moderated the fit statistics hit rate (not presented). 
The inspection of mean values of fit statistics performance according to the measurement 
periods (Table 2) reveals that the highest values for all hit rates were found for 8 measurement 
periods (76 % of the time for AIC, 23 % of the time for BIC, 16 % of the time for CAIC, 50 % 
of the time for HQIC and 75 % of the time for AICC). The overall AIC, BIC, CAIC, HQIC and 
AICC hit rates across all simulations conditions with normality of distribution of within subject 
errors were respectively about 49 %, 13 %, 9 %, 29 % and 48 %. 
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3.2. Consequence of misspecification in within subject variance-covariance structure 
 
Summary statistics for the mean relative bias (MRB) of the fixed effects can be seen in Table 
3. This table shows that the mean and median for β0 and β1=0.16 were very close to zero whereas 
the second slope term (i.e. β1=0.05) had much more variation. These terms also have a few 
small relative bias statistics shown by the small minimum and maximum values in Table 3. 
Therefore, on average the relative bias was kept under control for all of the fixed effects, but 
can become a problem for the slope term β1=0.05. Regarding the summary statistics for the 
MRB of the random components, on average, the random components tended to be biased and 
there was large variation in the RB statistics for each term. The minimum MRB were very 
heterogeneous as well as the maximum MRB. 
 
Table 3. Summary statistics for relative bias of fixed effects and random components 
 

Term Mean Var Med Min Max 
β0 -0.0055 0.0020 -0.0031 -0.1481 0.1239 
β1=0.05 0.1324 0.8734 0.4356 -2.3555 1.8066 
β1=0.16 -0.0238 0.1832 -0.0063 -0.7660 1.0912 
τ00=0.10 11.1703 15.6449 11.6894 2.3226 16.9867 
τ00=0.20 4.3273 2.7114 4.2420 -0.2352 7.3008 
τ11=0.05 0.5041 0.4394 0.3903 -0.5610 2.0901 
τ11=0.10 -0.1931 0.1993 -0.3513 -0.7406 0.8798 
τ01 -4.5152 6.3786 -4.0672 -10.9275 -0.9738 
σ2ɛ -0.3336 0.0188 -0.3521 -0.5904 -0.0348 

 
The mean relative error (MRE) of the fixed effects and random components from the fitted 
models related to each combination of the factors are replaced by ranks. For a given 
combination of the factors, the ranks of the MRE are determined, the lowest MRE having the 
rank 1. The median ranks of the MRE are determined for some factor levels (β1=0.05; β1=0.16; 
τ00=0.1 and τ11=0.05; τ00=0.2 and τ11=0.10) as well as for some groups of the factor levels based 
on the sample size and the measurement periods. The median rank of each of four (i.e. ID, 
AR(1), MA(1) and ARMA(1,1) covariance structures) MRE for all the 32 combinations of the 
factors is also computed. Only results of random components are presented in Table 4. Indeed, 
whichever the fixed effect considered, on average the relative error was kept under control 
without important difference between covariance structures. 
 
Table 2. Median ranks of the mean relative error of random components according to the 
considered factors 

 

 

ID: independence structure, AR: AR(1) structure, MA: MA(1) structure, AM: ARMA(1,1) structure. 

Simulated conditions τ00=0.10  τ00=0.20  τ11=0.05  τ11=0.10  τ01  σ2ɛ 
ID AR MA AM   ID AR MA AM  ID AR MA AM  ID AR MA AM  ID AR MA AM  ID AR MA AM 

Overall 4 2 3 1   4 2 3 1   3.5 2 2 2.5  1.5 3 2 4  4 2 3 1  4 2 3 1 
50 subjects with 5 time points 4 2 3 1   4 2 3 1   4 2 3 1  3 2 1.5 3.5  4 2 3 1  4 2 3 1 
50 subjects with 8 time points 4 2 3 1   4 2 3 1   3 2 1 4  1 3 2 4  4 2 3 1  4 2 3 1 
100 subjects with 5 time points 4 2 3 1   4 2 3 1   4 2 3 1  3 1.5 1.5 4  4 2 3 1  4 2 3 1 
100 subjects with 8 time points 4 2 3 1   4 2 3 1   2 3 1 4  1 3 2 4  4 2 3 1  4 2 3 1 
150 subjects with 5 time points 4 2 3 1   4 2 3 1  4 2 3 1  3 2 1.5 3.5  4 2 3 1  4 2 3 1 
150 subjects with 8 time points 4 2 3 1   4 2 3 1   3 2 1 4  1 3 2 4  4 2 3 1  4 2 3 1 
200 subjects with 5 time points 4 2 3 1   4 2 3 1   4 2 3 1  3 1.5 1.5 4  4 2 3 1  4 2 3 1 
200 subjects with 8 time points 4 2 3 1   4 2 3 1   2 3 1 4  1 3 2 4  4 2 3 1  4 2 3 1 
Growth parameter (β1=0.05) 4 2 3 1   4 2 3 1   3.5 2 2 2.5  2 2 2 4  4 2 3 1  4 2 3 1 
Growth parameter (β1=0.16) 4 2 3 1   4 2 3 1   3.5 2 2 2.5  1.5 3 1.5 4  4 2 3 1  4 2 3 1 
G matrix (τ00=0.1 and τ11=0.05) - - - -  - - - -  - - - -  - - - -  4 2 3 1  4 2 3 1 
G matrix (τ00=0.2 and τ11=0.10) - - - -  - - - -  - - - -  - - - -  4 2 3 1  4 2 3 1 
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ABSTRACT 

The relation between fertility and economic growth has been estimated in many empirical papers 

which recognized the linkage between them and how they influence each other. This study 

examined the factors which determine fertility levels, their trend, and how they affect fertility. 

Fertility was measured using children ever born and fitted into multi-factors additive Negative 

Binomial regression models. The data for the analysis of the study was based on secondary data 

from the 2010 Population and Housing Census and some excerpt from the 2014 Ghana 

Demographic Health Survey which were conducted by the Ghana Statistical Service, 2014. A 

total number of 64,140 women between the ages of 15-49 were used for the analysis. The study 

showed that, higher education and prevalent contraceptive use had a higher inhibiting effect on 

fertility than the other determinants of fertility. Respondents with no formal education were 

65.4% (IRR=1.654, 95% CI: 1.965-2.016) more likely to have children as compared to their 

educated counterparts. Modern contraceptive use is prevalent among women with higher 

education with most of these women in urban areas. To stem fertility related challenges, all 
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stakeholders must intensify campaign for female education and promotion of contraceptive use 

among females of child bearing age, because fertility affects all aspects of economies both 

nationally and internationally.  

 

 

 

 

 

1.0  INTRODUCTION 

Fertility is the natural capability of producing offspring(s) (Cleland and Wilson, 1987). 

Several research on fertility of Sub-Saharan Africa in the 1990’s found fertility rates to be 

very high (Caldwell and Caldwell, 1987; Caldwell and Orubuloye, 1992; Blesdsoe et al., 

1998). Peasant farming is commonly paracticed in sub-saharan Africa with parents relying on 

their children as source of labour, making parents view the human capital of their children 

(quality) as a substitute for their number children (quantity) (Becker, 1960; 1981; Willis, 

1973). Consequently, fertility has become a global concern. Researchers have proved the 

existing negative relationship between fertility and economic growth (Prichett, 1994; 

Tamura, 1989) which goes to prove that fertility if left uncontrolled would lead to poverty 

both at the household and national levels. 

In 1969, the government of Ghana initiated its first population policy to tackle issues of high 

fertility rates which was later revised in 1994 after it failed to achieve its target. Currently, 

Ghana’s total fertility rate (TFR) 0f 4.2 is considered as one of the lowest in Sub-Saharan Africa 

but very high comparative to the world’s TFR levels (USAID, 2014). Ghana is experiencing a 

sustained decline in fertility (USAID, UNICEF; 2011). TFR declined from a high of 6.4 births 
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per woman in 1988 to 5.2 births in 1993, 4.4 in 1998 and 2003, and 4.0 in 2008. Currently, 

fertility measures calculated from the 2014 GDHS indicates that the total fertility rate for Ghana 

is 4.2 children per woman, a slight increase from 4.0 children per woman in the 2008 GDHS 

survey. Childbearing peaks during age group 25-29 and drops sharply after age 39 (GDHS, 

2014). The total population in Ghana as at 2014 was estimated at 26.4 million with about 49.1% 

making up the female population (Trading Economics, 2014). The decline in fertility rates and 

mortality rates has not only changed the size of population, it has also changed the age-

distribution of male and female population across countries. These changes in the age 

distribution of female population are expected to influence the average fertility rates. There are 

differences in fertility between urban and rural areas of the country and there are also regional 

and socioeconomic differentials. Attempts have been made to explain the drop and variations in 

fertility (Livi, 1992 cited by Agyei-Mensah, 1997; Knodel and Van de Walle, 1986). 

Human fertility is a function of a variety of factors which is constantly changing from place to 

place contingent on conditions specific to the area. A proper understanding of the dynamics of 

these factors is crucial to policy makers at all levels. The study seeks to explore the extent to 

which fertility determinants affect the level of fertility among women of child bearing age in 

Ghana. 

 

2.0 METHODOLOGY 

The data for the study was based on secondary data from the 2010 Population and Housing 

Census (PHC) and some excerpt from the 2014 GDHS which were conducted by the Ghana 

Statistical Service (GSS, 2014). This study focused on all women who have duly completed 

individual women questionnaires at the time of the survey. (DHS–www.measuredhs.com, 2014); 
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Principles and Recommendations for Population and Housing Censuses (United Nations, 2008, 

2.8n., 2.410). 

2.1 DESCRIPTION OF VARIABLES 

Children ever born (CEB) was the dependent variable while the independent variables included 

respondents’ location, religion, age, age at first marriage, paid employment status, marital status, 

marital duration, education attainment, husbands’ education attainment, residence, zones,  

ethnicity. 

2.2 DATA ANALYSIS  

Descriptive statistics and analysis of variance (ANOVA) was used to analyze the data. Given the 

count nature of the dependent variable, a generalized linear model (GLM) with a natural 

logarithmic linear function negative binomial regression, was adopted to assess how the 

predictor variables influence the level of fertility. Negative Binomial regression has the 

advantage of fitting nonlinear models over the linear regression models including situations 

involving the number of occurrences (counts) of an event (Little, 1978; Rogers, 1991; Poston, 

2002 and has been used in several studies (Fahrmeir et al., 2001; Kazembe, 2009).  

A generalized linear model, 

 = β + offseti   ……………………………………………………. (1)   

can then be fitted. This is similar to; 

P (children born) =  …………………………………………………. (2) 

Where,   λ = α +  + ε ………………………………………….. (3) 
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α is the constant Βi are the coefficients and xi are the independent variables (Fahrmeir et al., 

2001; Kazembe 2009). 

Therefore, 

Log (No of Children) = α +  + ε …………………………….. (4) 

Alternatively, 

No of children = exp (= α +  + ε) ………………………..… (5) 

This means that the Negative Binomial regression model is a generalized linear model with 

Poisson error and a log link and implies that one unit increase in a xi is associated with a 

multiplication of μi by exp(βi). 

The incidence rate ratio (IRR) for a one-unit change in is given by, 

 =   ……………………..… (6)
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3.0 RESULTS 

 

TABLE 3.1: Social-demographic and Reproductive characteristics of respondents and summary of their children ever born 

(CEB), PHC 2010. 

Characteristics 

 

Frequency 

(N) 

  Percentage  

             (%)                            
   Mean 

Std. 

Deviation 

Std. 

Error 

of 

CEB 

              

95%             

CI of 

Mean         

 

    F sig 

       

Lower 

Bound 

Upper 

Bound   

AGE 15-19 13289 20.23 0.102 0.368 0.003   0.095 0.108 9042.371 0.000 

 20-24 12248 19.22 0.676 1.031 0.009 0.658 0.694   

 25-29 11067 17.60 1.608 1.570 0.015 1.578 1.637   

 30-34 8873 14.01 2.699 2.027 0.022 2.656 2.741   

 35-39 7612 11.88 3.634 2.290 0.026 3.582 3.685   

 40-44 6175 9.62 4.369 2.632 0.033 4.303 4.435   

 45-49 4896 7.43 4.760 2.749 0.039 4.683 4.837   

           

REGION Western 6027 37.74 2.118 2.427 0.031 2.057 2.180 159.083 0.000 

 Central 5561 5.48 2.204 2.519 0.034 2.138 2.270   

 Greater Accra 12109 3.15 1.385 1.809 0.016 1.353 1.418   

 Volta 5271 7.42 2.191 2.435 0.034 2.125 2.257   

 Eastern 6596 12.89 2.164 2.419 0.030 2.105 2.222   

 Ashanti 12947 1.47 1.880 2.297 0.020 1.840 1.919   

 Brong Ahafo 5802 6.40 2.234 2.515 0.033 2.169 2.299   

 Northern 5776 3.75 2.488 2.744 0.036 2.417 2.559   

 Upper East 2408 17.10 2.488 2.615 0.053 2.384 2.593   
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 Upper West 1663 3.20 2.419 2.762 0.068 2.286 2.551   

           

RESIDENCE Urban 35773 58.88 1.615 2.061 0.011 1.594 1.636 2355.991 0.000 

 Rural 28387 41.12 2.520 2.661 0.016 2.489 2.551   

           

SCHOOL 

ATTENDED Never 
17969 28.88 3.292 2.728 0.020 3.252 3.332 7863.116 0.000 

 Now 11386 16.46 0.078 0.431 0.004 0.070 0.086   

 Past 34805 54.65 1.990 2.131 0.011 1.968 2.012   

           

HIGHEST 

EDUCATION 

LEVEL Primary 

 

 

8509 

 

 

13.31 

 

 

2.180 

 

 

2.410 

 

 

0.026 

 

 

2.129 

 

 

2.232 

 

 

827.538 

 

 

0.000 

 JSS/JHS 23796 37.57 1.710 2.075 0.013 1.684 1.736   

 SSS/SHS 8801 16.82 0.667 1.333 0.014 0.639 0.695   

 Vocational/technical 
1457 3.42 1.439 1.684 0.044 1.353 1.526 

  

 higher/tertiary 3628 71.12 0.811 1.395 0.023 0.766 0.856   

           

MARITAL 

STATUS Never married 

 

23572 

 

36.19 

 

0.222 

 

0.743 

 

0.005 

 

0.213 

 

0.232 

 

6694.581 

 

0.000 

 

Informal/Living 

together 
4434 7.18 2.152 2.107 0.032 2.090 2.215 

  

 Married 31157 48.46 3.162 2.413 0.014 3.135 3.189   

 Separated 1474 2.48 2.647 2.106 0.055 2.540 2.755   

 Divorced 2137 3.46 3.017 2.186 0.047 2.924 3.110   

 Widowed 1386 2.21 4.078 2.638 0.071 3.939 4.217   
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RELIGION 

 

 

 

Catholic 

 

 

 

8213 

 

 

 

12.32 

 

 

 

1.883 

 

 

 

2.348 

 

 

 

0.026 

 

 

 

1.832 

 

 

 

1.933 

 

 

 

239.670 

 

 

 

0.000 

 Other Christian 32271 49.26 1.837 2.232 0.012 1.813 1.862   

 Islam 10669 18.53 2.126 2.521 0.024 2.079 2.174   

 Traditionalist 2709 4.33 3.140 2.888 0.055 3.031 3.249   

 Others 10298 15.57 2.268 2.494 0.025 2.220 2.317   

           

ETHNICITY Akan 75859 37.74 1.915 2.286 0.008 1.899 1.931 7877.416 0.000 

 Brong 11014 5.48 2.049 2.309 0.022 2.006 2.092   

 Nzema/Sefwi 6337 3.15 2.152 2.466 0.031 2.091 2.213   

 Ga-Dangbe 14909 7.42 1.835 2.182 0.018 1.800 1.870   

 Ewe 25915 12.89 1.849 2.208 0.014 1.822 1.876   

 Guan 2963 1.47 2.049 2.409 0.044 1.962 2.136   

 Mole-Dagbani 12871 6.40 2.124 2.543 0.022 2.080 2.167   

 Wala 7543 3.75 2.304 2.650 0.031 2.245 2.364   

 All other tribes 34379 17.10 2.233 2.536 0.014 2.206 2.259   

 Foreigners 6434 3.20 2.063 2.369 0.030 2.005 2.121   

           

           

EMPLOYMENT 

STATUS Employed 

 

42290 

 

66.92 

 

2.611 

 

2.479 

 

0.012 

 

2.587 

 

2.635 

 

4469.123 

 

0.000 

 Unemployed 3025 5.03 1.316 1.724 0.031 1.255 1.377   

 Not active 18845 28.04 0.791 1.667 0.012 0.767 0.815   

           

EMPLOYMENT 

SECTOR Public (Government) 

 

1902 

 

2.80 

 

1.450 

 

1.774 

 

0.041 

 

1.370 

 

1.529 

 

222.377 

 

0.000 

 Private (Formal) 2000 3.05 1.308 1.832 0.041 1.228 1.388   

 Private (Informal) 39408 62.88 2.725 2.492 0.013 2.701 2.750   
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Semi-

Public/Parastatal 
31 0.05 1.968 2.331 0.419 1.113 2.823 

  

 

NGOs (Local and 

International) 

146 0.20 1.979 2.344 0.194 1.596 2.363 

  

 

Other International 

Organisations 

12 0.01 0.333 0.651 0.188 -0.081 0.747 

  

 

 

CI = Confidence Interval. 

The data has some missing values. Thus the N has different values across some of the variables. The data for this analysis consisted of 

64,160 women with ages 30-34 constituting 14.29% and ages 45-49 7.3% with about (37.74%) of the respondents coming from the 

Western region. Over 58.88% live in the urban areas whiles 71.12% have had a form of education (higher or lower) and 28.88% has 

never had any form of education. About 48.46% were married whilst 36.19% had never been married. Rural areas had more births 

(twice as much) 2.520 (2.489-2.551) than urban areas 1.615 (1.594-1.636). The table further shows significant differences between the 

various socio-demographic characteristics. 
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Figure 3. 1: Distribution of CEB among Ghanaian women PHC, 2010. 

Variation in CEB increases with increasing age. The upper ranges and median were highest 

amongst age group 4, 6 and 7 whilst the median for age group 3 and 5 were relatively the same 

with age group 5 having higher range than age group 3.  

 

 

 

 

 

 

 

98 sciencesconf.org:sada2016:117974



Table 4. 1: Selecting the Best Fit Model 

To determinethe best fit model, six candidate models were fited and the model with best acuracy 

measures selected. Below is a table of those tables with their deviances. 

MODEL                                                                                 DEVIANCE 

I      Region, employment status, marital                                    21715.694 

       status, school attended, highest education 

        level, age, ethnicity 

II   Region, Residence, marital status, schooling                       21759.210 

     attended, highest education level, employment 

      status, age, religion 

 

III  Region,residence, marital status, age, school                       21862.182 

      attended, highest education level, employment  

       status, religion  

 

IV Region, employment status, age, marital status,                   21777.443 

      school attended, highest education level 

 

V   Region, residence, age, marital status, school                      21840.970 

     attended, highest education level, employment 

     status 

 

VI  Region, marital status, school attended, highest                  20746.419 

      education level, employment status, age, religion 

       residence, ethnicity 
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Out of the six (6) candidate models of various specifications conditional on the independent 

variables (  the number of children ( ) born by the Kth woman were modeled using the 

Negative Binomial Regression. Model VI was selected as the best fit because it had the smallest 

deviance. Respondents’ region, marital status and ethnicity (independently) had significant 

bivariate relationships with fertility levels but were not significant determinants of fertility in the 

multiple regression models. The insignificance of marital status and region (geographical 

location) may be connected with other contextual factors which were not available in the dataset. 

The reduced model hence becomes; 

 

 

Table 4. 2: Negative Binomial Regression of CEB  

 
VARIABLE                         MULTIPLE NEGATIVE BINOMIAL REGRESSION  

 IRR (95% CI)                               P-value  
 

AGE     

15-19 0.040(0.0370.044) 0.000  

20-24 0.159(0.1500.167) 0.000  

25-29 0.340(0.3230.358) 0.000  

30-34 0.570(0.5410.600) 0.000  

35-39 0.760(0.721-0.801 0.000  

40-44 0.901 (0.850.953) 0.000  

45-49 1.000  Reference  

RESIDENCE     

Urban 0.741(0.7200.763) 0.000  

Rural 1.000  Reference  

SCHOOL 

ATTENDED     

Never     
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Now 0.263(0.2420.286) 0.000  

Past 1.000  Reference  

 

HIGHEST 

EDUCATION 

LEVEL     

Primary     

JSS/JHS 2.129(1.979-2.290 0.000  

SSS/SHS 1.755(1.6381.880) 0.000  

Voacational/technical 1.153(1.0721.240) 0.000  

Higher/tertiary 1.000  Reference  

SCHOOL 

ATTENDED     

Never     

Now 0.263(0.2420.286) 0.000  

Past 1.000  Reference  

HIGHEST 

EDUCATION 

LEVEL     

     

JSS/JHS 2.129(1.9792.290) 0.000  

SSS/SHS 1.755(1.6381.880) 0.000  

Vocational/technical 1.153(1.0721.240) 0.000  

Higher/tertiary 1.000  Reference  

EMPLOYMENT 

STATUS     

Employed 1.144(1.1001.190) 0.000  

Unemployed 1.029(0.9601.102) 0.042  

Not active 1.000  Reference  

 

 Intercept= 2.685 (2.456-2.936) 

Where  j = vectors of parameter estimates for the various categories of variables 
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4.0 DISCUSSION   

The study found that the respondent’s age, educational attainment, highest educational level, 

employment status, marital status, religion, ethnicity and residence location affect fertility 

levels in Ghana. As expected, respondents’ age was a significant determinant of fertility 

levels as older women had higher fertility levels than younger women. It was also found that, 

as the level of education increases, the number of children born per woman reduces. 

Respondents who had secondary or higher education had lower fertility than the respondents 

without education or those with primary education. Studies by the United Nations of 26 

countries (United Nations, 1995) also confirmed that there exists a negative relationship 

between female education attainment and fertility (Ainsworth et al., 1996; Lam and Duryea, 

1999; Sackey, 2005; Schulz, 1973). Longer time spent schooling leads to the deferral or 

delay in marriage which in turn lowers the chance of giving birth to many children; it comes 

with exposure which increases the quest for a more comfortable future lifestyle; quality care 

for wards could be reasons for the mark differential (Singh, 1994; Vavrus and Larsen, 2003). 

Also, studies have identified higher education as a factor influencing use of modern 

contraceptives and fertility is known to be lower among women where prevalence of 

contraceptive use is high (Shen and Williamson,1999; Mason, 1986). Respondents’ residence 

location (rural or urban) was significant in both models. Studies have reported that, rural 

women tend to have more children than urban women (Cohen, 1993; Jolly and Gribble, 

1993). This is due to the overwhelming low socio-economic conditions in rural areas. With 

regards to researches by Easterlin synthesis framework (Easterlin, 1975; Easterlin and 

Crimmins, 1985) or that of Caldwell’s wealth-flow theory (Caldwell, 1976, 1982), it is 
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possible to make a good case that the net benefits to parents of having large numbers of 

children are distinctly lower in urban than in rural places. Rural dwellers often have higher 

fertility rates which results in large family needed for socioeconomic activities including 

farming (Kibirige, 1997). Children in rural areas therefore typically begin contributing to 

agricultural production at relatively early ages, whereas this benefit may not be the case in 

urban areas. There is however a possibility for increasing contraceptive use among rural and 

less educated women which can in turn lead to further fertility decline (Oliver, 1995). 

The Negative binomial regression model fitted established a non-linear relationship between 

CEB and the dependent variables. 

 

 

 

5.0 CONCLUSION AND RECOMMENDATION 

It is evident from this study that; Negative binomial regression model is an applicable tool for 

predicting number of children a woman is expected to have. This will ease the yearning of policy 

makers and researchers for fertility data for up to date planning. 

Also, findings from this study shows that, even though with the current TFR of 4.2, Ghana’s 

fertility decline is likely to further decline and complete the transition cycle but at a slow place. 

This can be achieved by increasing the widespread use of contraception, participation of more 

women in the force, further improvement in women’s education attainment and a continuing 

inclination towards later age at marriage among women. 

Although causal conclusions cannot be drawn from these results, the study suggests several 

strategies for continuing to reduce fertility particularly; 
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  Increased educational and economic opportunity for women. 

  Increased access to reproductive health knowledge and services in schools and through 

public campaigns  

  Involving men in family planning programs and campaigns.  

 Government and non-governmental organizations should make conscious efforts at 

encouraging women to reduce number of children they would have in their lifetime 

through use of modern contraceptive methods. 

 Enforcing socioeconomic policies as components of population programmes by the 

government. 
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Markovian model for rainfall data. A case study on the
monthly rainfall in Madagascar from 2013 to 2014.

Angelo Raherinirina∗† A.R Hajalalaina‡

Abstract

We dispose of the monthly rainfall data for the 22 regions of Madagascar during two
years ( 2013 to 2014). From these dataset, we propose a markovian model of rainfall dy-
namics. The transition matrix of the Markov chain is estimated by the maximum likelihood
method. We studied the asymptotic behavior of the model by estimating the stationary dis-
tribution of the Markov chain associated. Simulations of the model show insufficient pre-
cipitation in almost all the regions of Madagascar. The situation is serious for the southern
part of the big island. It rarely rains, and if it does,the rate of rainfall often exceeds normal.

Keywords: Markov model, Rainfall dynamics, stationary distribution.

1 Introduction
Every country is concerned by the problem of global warming . As a developing country
, and especially being the largest island in the Indian Ocean, the position of Madagascar is
very delicate. Now, the south western part of the country is already affected by drought. The
avalaibility of an effective model is therefore essential for understand the evolution of rainfall
in Madagascar.

A lot of work has been done on rainfall and many models have been proposed. Rabefitia
et al [6] propose a model based on the linear regression to estimate the rainfall evolution. Sim-
plifications and abstractions done by the model reduce greatly its effectiveness. There are also
more complex models such as Fabio et al in [2].

In this paper, we propose markovian approach to the analysis of the history of rainfall in
Madagascar. With some restrictive assumptions, this technique allows for a relatively simple
and consistent model. This method is widely used in rainfall modeling [5, 7, 4].

We use a data set published by the Ministry of Agriculture Malagasy on the history of the
rainfall of the 22 regions of Madagascar in 2013-2014(cf: http://www.agriculture.gov.mg).

∗Email: angelo_raherinirina@yahoo.fr
†Laboratoire de Recherche Appliquée Multidisciplinaire,University of Fianarantsoa, Madagascar
‡University of Fianarantsoa.
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2 The Markov model of rainfall
We have the monthly precipitation values in the 22 regions of Madagascar during the period
2013-2014. These values are classified in three categories: insufficient (I) : if the monthly
rainfall is strictly less than the normal rainfall; normal (N) : if the monthly rainfall is near
normal rainfall; and abundant (A) if monthly rainfall is strictly higher than normal rainfall.

The value of rainfall in a region p ∈ P = {1, . . . , 22} is an element of the set E =
{I,N,A} which will be our state space. The observation on the n th months will be noted by(
e
(p)
n

)
; where n = 1 : 24. We assume that the monthly rainfall in a region is independent of

the others , and varies according a markovian regime[1].
So, we can model the rainfall dynamic in a region p by a Markov chain (Xn)n=1:N . The

transition matrix associated is Q ∈ R3×3 :

Q =




1− θ1 − θ2 θ1 θ2
θ3 1− θ3 − θ4 θ4
θ5 θ6 1− θ5 − θ6


 , (1)

where Θ = (θ1, θ2, θ3, θ4, θ5, θ6) ∈ {[0, 1]6 such as (θ1+θ2) ≤ 1, (θ3+θ4) ≤ 1, (θ5+θ6) ≤ 1}.

I

N

A
1− θ5 − θ6

θ3

θ4

θ2

1− θ3 − θ4

θ6

θ5
θ1

1− θ1 − θ2

Figure 1: Three states Markov model of rainfall data.

In this case, the distribution associated with the observations is

P(X
(p)
1:N = e

(p)
1:N , ∀p = 1, . . . , P ) =

P∏

p=1

P(X
(p)
1:N = e1:N)

=
P∏

p=1

δA (e
(p)
0 ) Q(p)(e

(p)
0 , e

(p)
1 ) · · ·Q(p)(e

(p)
N−2, e

(p)
N−1) (2)

3 Results and discussions
We infer the model by the maximum likelihood approach described in [1]. The likelihood is
deduced from (2):

Lp(θ) =
22∏

p=1

(1− θ1 − θ2)n
(p)
II θ

n
(p)
IN

2 θ
n
(p)
IA

2 (1− θ3 − θ4)n
(p)
NN θ

n
(p)
NI

3 θ
n
(p)
NA

4 (1− θ5 − θ6)n
(p)
AAθ

n
(p)
AN

6 θ
n
(p)
AI

5 ,

(3)

2
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where n(p)
i,j is the number of transitions from i to j, i, j ∈ E.

The maximum likelihood estimate (MLE) of the transition matrix is:

Q̂ =




0.7515 0.0364 0.2121
0.8125 0.1250 0.0625
0.4918 0.1311 0.3770


 . (4)

This matrix is irreducible and has an invariant distribution deduced from this equation:

π̂ = π̂ Q̂.

We find π̂ = (0.6925; 0.0651; 0.2424),( figure (2)).

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 

 

insufficient
normal
abundant

Figure 2: Invariant distribution of the three states Markov model of rainfall data. These propor-
tions represent the general trend of rainfall quantity in all regions of Madagascar.

According to this model , the probability that rainfall is sufficient ( normal ) is about 0.065
. Generally, it’s insufficient, with a probability close to 0.7. The process found quickly its
equilibrium around 4 months. Every year, precipitation is insufficient 8 months out of 12.

4 Conclusion and perspective
The quality of the Markov approach lies in its consistency with the reality and above all its
simplicity. In this paper, we use Markov chain to model the evolution of rainfall in Madagascar
by using a data set published by the Ministry of Agriculture. We infer the model with a max-
imum likelihood method. The simulation results showed the problems of insufficient rainfall
in all regions of the big Island. It rarely rains and often with a very high quantity compared
to normal (flood). Using a bayesian approach in the estimation of transition matrix of the
Markov model can improve the performance of this model. Combined with the Markov Chain
monte Carlo (MCMC) method and a good choice of prior distribution, this approach will allow
us to have a much more realistic model. This will be the continuation of this work.
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Figure 3: Simulations of the monthly precipitation in the 22 regions of Madagascar as a Markov
models. The figures show the changing proportions of the three types of precipitation to its
invariant laws.
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Abstract 

Cure models are often used in survival studies in which some subjects do not experience the 

event of interest however long they are followed. The survival time distribution of such data 

tends to a non-zero limit (known as cure rate) as the time tends to infinity; it is therefore an 

improper distribution. Cure models have been widely developed since the first formulation 

by Boag(1949) [1] followed by Berkson and Gage (1952) [2]. 

In cancer population-based studies such as in cancer registries, cause of death informations 

may be often unreliable or unknown.Hence net survival, the one that would be observed in a 

hypothetical world where cancer would be the only cause of death [3,4] is estimated 

through the excess hazard ratemethodology without requiring a record of the cause of death 

[5,6]. Following this methodology, the hazard rate of an individual i living with cancer is 

defined by:  

λo,i(t;a) = λp,i(t) + λe,i(t-a), 

where ais the age at the diagnosis, tis the time from birth, λo,iis the observed hazard rate 

function, λp,iis expected hazard rate in a group of persons from the general population 

sharing the same demographic characteristics withi (λp,i is available and derived from the life 

tables) and λe,i(t-a)is the excess hazard rate due to cancer.  

The net survival Sn,i(t-a)is the survival that corresponds to the excess hazardrate λe,i(t-a). 

Generallyλe,i(t-a) approaches zero after a while, henceSn,i(t-a) levels off at a non-zero value 

that corresponds to the probability of cure i.e. the proportion of patients (with the same 
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characteristics as i)who are not at risk of dying from the cancer (cured patients).Doing this 

cure models have been extended to the net survival framework; see Verdecchia et al. (1998) 

[7], Gamel et al. (2000) [8] or Lambert et al. (2007) [9] among others for illustrations of the 

methodology. The time elapsed between diagnosis and time from which no patient will 

experience death due to cancer is referred to as “time to cure” which we denote T. In cancer 

survival studies T is one of the main indicators. In all cure models that have been developed, 

T is derived as a post-estimation of the model and results are subject to various criticism.  

We propose a new paradigm introducing time to cure T in a parametric model as a 

parameter to be estimated. We consider T to be deterministic. In order to model T we will 

have to identify the time at which the excess mortality rate λe,i(t-a)reaches zero. This 

supposes that estimating λe,i(t-a) also requires estimating the interval [0,T] on which λe,i(t-a) 

is non-null.First, we show that the model hasa cure rate model structure and establish 

mathematically how the cure rate can be derived from the model. Second we show how the 

model can be extended naturally to incorporate covariates. Third we conducta simulation 

study through a Monte Carlosimulation method to assess the model performance and to 

validate the model. In the fourth part we give an illustration on real dataset by fittingthe 

model to data from large-scale clinical trials with long follow-up of colorectal cancer 

patients. 
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Modeling time to cure, cure rate, net survival, cancer. 
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Abstract 

In this paper we derive the first two moments of the compound discounted renewal cash flows 

when taking into account dependence between the cash flow and its occurrence time. The 

dependence structure between the two random variables is defined by a Farlie-Gumbel-

Morgenstern copula. 
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1. Introduction 

The effect of random interest rate on the discounted aggregate sums is still the subject of several 

studies, especially in the context of renewal process. Several authors such as Wilmot (1989), 

Léveillé & Garrido (2001a, 2001b), Léveillé, Garrido & Wang (2009) worked on the moments 

and distribution of this risk process. 

For the compound renewal sums with discounted amounts, general formula has been given on 

the moments of these sums by Léveillé & Adekambi (2011) when the instantaneous interest 

rate is stochastic and there is no dependency between the claim amount and the time 

occurrence of this claim. In reality, the cash flow received by an investor at some time 

depends on how the economy is behaving at that time. 

The discounted aggregate sums is also used in many other fields of application. For example, 

it can be used in health cost modeling, see Govorun et al. (2015), or in reliability in civil 

engineering, see van Noortwijk and Frangopol (2004). 

In this paper, we want to extend the work of Bargès et al. (2011) where they introduce some 

dependency between the inter-claim times and the subsequent claim amounts by allowing the 

inter-claim times to following any distribution other than the exponential distribution, and the 

interest rate is a random variable but with the same dependence structure. We will then apply 

our results to calculate the first two moments of the present value of random cash flow or 

random dividends. 

Assume that the instantaneous interest rate, from which the inflation rate has been subtracted, 

is a stochastic process 
 
 t  such that the integral of each sample path is finite almost 

everywhere on each time interval 
 

0,  . 

Define our risk model as follows: 

(i) The number of cash flow or dividends   , 0N t t    and   , 0dN t t   form, 

respectively, an ordinary and a delayed renewal process and, for  1,2,3,...k   : 

 the positive cash flow occurrence times are given by kT , 

 the positive cash flow inter-arrival times are given by 1 , k k kT T k    , and 0 0T 

. 

 (ii) The random kth cash flow (without inflation) is given by kX , and 

  ,kX k  are independent and identically distributed ( i.i.d), 

  , ,k kX k  are mutually independent; and  the first two moments of 1X  exist. 

(iii) The aggregate discounted value at time 0t   of the inflated claims recorded over the 

period  0, t  yields, respectively, for the ordinary and the delayed renewal case: 
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We introduce a specific structure of dependence based on the Farlie-Gumbel-Morgenstern 

(FGM) copula between the i-th cash-flow and its occurrence time such that, using  ,i iX T , 

the joint cumulative distribution function (c.d.f.) is 
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for  , *x v    and where  
iXF x  and  

iTF v  are the marginals of respectively iX  and 

iT . Recalling the density of the FGM copula 
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for      , 0, 1 * 0, 1u v   , the joint probability density function (p.d.f.) of  ,i iX T
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where 
iXf   and 

iTf are the p.d.f.’s of respectively iX  and iT . 

The sequence  
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  are independent. 

According to these hypotheses, we present in Section 2 some results on the first moment of 

this present value risk process, for a stochastic instantaneous interest rate. In Section 3, we 

present the same type of results but this time for the second moment. Sections 2 and 3 are 

illustrated for exponential and Erlang inter-arrival times. In Section 4, the conclusion follows. 
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2. First moment 

The first moment of the discounted compound Poisson sums with dependence between the 

cash flow occurrence time and the subsequent cash flow has been considered for the first time 

by Bargès et al. (2011), for a positive constant instantaneous interest rate  . They have 

essentially used renewal arguments to get their formulas. 

Lemma 2.1 

Consider an ordinary or a delayed renewal counting process, such as defined in 

Section 1. Then the conditional density probability functions of Tk N t  n and 

Tk Nd t  n  are given, respectively, for 0 s t   and  k  n , by: 

 (1) For the ordinary case: 

f
Tk N t n

(s) 

fTk
s  F1

t - s - u  fTn-k
u du

0

t -s

  

P((t)  n)  .                     

 

(2) For the delay case: 

f
Tk Nd t n

(s) 

fTk
s  Fnk1

t - s - u  fTn-k
u du

0

t -s

  

P Nd (t)  n 
 

For the proof, see Léveillé & Adékambi (2011). 

Theorem 2.1 

According to the assumptions of Section 1, the first moment of the discounted aggregate cash 

flow is given, for 0t  , by: 

(1) For the ordinary renewal case: 

                     
0 0

1

t t

E Z t E X E Y E D v dm v E Y E X E D v d v                  

(2) For the delayed renewal case: 

                     
0 0

1

t t
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Abstract  

The date palm (Phoenix dactylifera L.), an iconic species of arid zones, is of particular interest in the Sahel due 

to its phenological plasticity in relation to climate change and its double-flowering capacity. This article explores 

local practices and knowledge associated with date palm cultivation in the oasis basins of southeastern Niger, 

and provides an inventory of seed propagated varieties, for more effectively guiding agricultural research and the 

breeding of this species. The qualitative data were processed by a Multiple Correspondence Analysis. We 

inventoried 19 date palm varieties, for which the main distinctive criterion was fruit colour, but some other 

criteria such as biology or provenance were also used. The cultural practices and knowledge associated with the 

date palm in Manga have improved since the 1990s. They also depend on ethnic groups and the importance they 

assign to farming compared to livestock rearing and trading activities. The type of basin (high, intermediate, or 

low water table) influences growers’ practices and perceptions. Lastly, the date harvest in the wet season is 

abundant, but of mediocre quality, whereas it is the opposite for the dry season harvest. To conclude, sustainable 

development of date palm cultivation in the context of climate change in the Sahel zone relies firstly on the 

selection of varieties that are early fruit producers or that can complete fruit maturation during the raining season 

and secondly on technical capacity building for producers. 

Keywords: Sahel, Phoenix dactylifera, seed propagated variety, local knowledge, climate change. 
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New approach for Bandwidth Selection in the Kernel Density Estimation 
Based on Generalized Information 
 
 
 
The choice of the width of the window is crucial to estimate a kernel density KDE. 
Various methods of selecting the smoothing parameter, based on optimality criteria 
such as least squares method LSCV cross validation and cross-validation of the Kullback-
Leibler distance are proposed. We present here an informational type criteria to select 
the optimal parameter in nonparametric density estimation. 
The motivation here is based on finding a method generalizing the classical LSCV 
method  
by using  the β-divergence criteria. 
After given the statistical properties associated to this new methodology, we propose a 
comparative study with several methods such as the Normal Reference NR, the SJ 
proposed Sheather and Jones, but also widespread LSCV (LSCVg). 
This confirms our theoretical results and evaluate the performance of our approach. 
 
 
Mots-clés: nonparametric density estimation, β-divergence, Integrated squared error, bandwidth 
AMS Subject Classification : 62G07, 94A17 .  
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Abstract 

The neural network model has been performed on the Principal Component Analysis 

(PCA) to obtain nonlinear principal component analysis (NLPCA), which allows the 

extraction of nonlinear features in the dataset missed by the PCA. The objective is to 

compare the modes extracted through this statistical analysis to those previously 

extracted through the more simple PCA. The focus is on the differences between SST 

inter-annual variability patterns; either extracted through traditional PCA or NLPCA 

methods. CMIP5 (Coupled Model Intercomparison Project Phase 5) pre-industrial 

simulations are examined to assess the ability in reproducing the El Niño, Atlantic dipole 

and Atlantic cold tongue (ACT) variability in the Tropical Atlantic Ocean. We present 

results of PCA and NLPCA on the ERSST data set from the NOAA and few models of 

CMIP5 model ensemble. Our results show that a modest number of models were able 

to correctly capture the meridional mode (Atlantic dipole). NLPCA shows that the spatial 

distribution of the El Niño pattern signature in model HadGEM2-AO compares 

reasonably well with the observed features but with sign reversal. It is shown that 

NLPCA can be used as a benchmarking tool for ocean models to assess their ability in 

reproducing the ACT variability.  
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Figure 1 and 2. Boxplot of mean bias and relative errors for Poisson 
model and its extensions: case of 1 covariate  (𝛽0= 0.14 and 𝛽1=0.063) 

• What is the combined effect of sample size, number of  

covariates, degree of overdispersion or proportion of zeros on 

Poisson and its extensions efficiency when one analyze 

ecological count data? 

1. The Problem 

3. How we addressed the RQ 

4. The main Results and Conclusions 

Acknowledgments:  
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 Productivity Programm), “PPAAO-BENIN”. 

• Figures 1 and 2 show the best behavior of the Negative  

binomial, Quasi-Poisson and Poisson (case of 1 covariate). 

Nevertheless, the Negative binomial obtained the lowest 

median values of bias and relative error for all combinations of 

n and k. Even when data are generated from the Poisson 

model, ZIP and Negative binomial models tend to yield small 

root mean square error values (Table 1).  

• mean bias, mean relative error 
and root mean-squared error 
(RMSE), lowest values are 

better. 

30 combinations for Poisson data and 20 combinations for ZIP data each replicated 1000 times using bootstrap technique. 

 
• Results of Monte Carlo study have been used to select the best model which fits the number of wilted plants within pineapple cultivars in  

Benin based on the overdispersion of these data, the proportion of zeros, the sample size and the number of covariates. GLM have also been 

applied on the data. All data were analyzed using R software. 

Selected references: 

O’Hara RB and Kotze DJ. 2010. Do not log-transform count data. Methods in Ecology and Evolution 1:118–122. 

Paxton P., Curran P. J., Bollen K. A, Kirby J, and Chen, F. 2001. Monte Carlo  experiments: Design and implementation. Structural Equation Modeling, 8, 287-312. 

On Generalized Linear Models (GLM) With Poisson Family:  

Applications In Ecology 
www.labef-uac.org  

2. The Research Question (RQ) 

• Ecological data are often discrete. For a Poisson  

distribution, the variance is equal to the mean. This may be 

quite restrictive for ecological data, which often exhibit more 

variance than the mean called overdispersion and also contain 

many zero observations (O’Hara and Kotze, 2010).  

• n=25, 50, 100, 500 

and 1000 

Overdispersion 

Parameter (k) and 

proportion of zero (p) 

 

Sample size 

 

Fitted models 

  

 

Comparison criteria 
 

• P, Quasi-Poisson (QP), 

Negative binomial (NB), 

ZIP and Linear model 

(LM) 

• P, NB, ZIP and Zero 

Inflated Negative 

Binomial (ZINB) 

 

Using bootstrap  on 

population data 

Monte Carlo study (Paxton et al., 2001) 

Data generated from 

Poisson (P) distribution of 

mean µ=1, with 1 or 2 

covariates 

Population data, size  

N=10000 
 

Data generated from 

Zero Inflated Poisson 

(ZIP) distribution with 1 

or 2 covariates  

• k=2, 4, 8, 10, 12 and 
20 

• p=0.20, 0.40, 0.60 
and 0.80 

• Akaike Information Criterion 
(AIC), lowest values are 

better. 

Application on pineapple data 
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n k Poisson 
Quasi-

Poisson 

Negative 

binomial 
ZIP LM 

25 2 3 3 5 2 1 

25 4 3 3 5 1 2 

25 8 2 2 4 1 5 

25 10 2 2 4 1 5 

25 12 2 2 4 1 5 

25 20 2 2 4 1 5 

50 2 3 3 5 2 1 

50 4 2 2 5 1 4 

50 8 2 2 4 1 5 

50 10 2 2 4 1 5 

50 12 2 2 4 1 5 

50 20 2 2 4 1 5 

100 2 4 4 1 3 2 

100 4 3 3 2 1 5 

100 8 3 3 2 1 5 

100 10 3 3 2 1 5 

100 12 3 3 2 1 5 

100 20 3 3 2 1 5 

500 2 3 3 1 5 2 

500 4 2 2 1 5 4 

500 8 2 2 1 4 5 

500 10 2 2 1 4 5 

500 12 2 2 1 4 5 

500 20 2 2 1 4 5 

1000 2 3 3 1 5 2 

1000 4 2 2 1 5 4 

1000 8 2 2 1 4 5 

1000 10 2 2 1 4 5 

1000 12 2 2 1 4 5 

1000 20 2 2 1 4 5 

Table 1.  Median ranks of Poisson model  

And its extensions according to the 
RMSE values: case of 1 covariate  
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Figure 3. Boxplot of mean bias for Poisson 
model and its extensions: case of 2 covariates  
(𝛽0= 0.14, 𝛽1=0.063  and 𝛽𝟐= -0.15 ) 

• Figures 3 and 4 present the best behavior of the Negative  

binomial, Quasi-Poisson and Poisson models for the first slope. 

Though LM presents the lowest median values of bias and relative 

error for all combinations of n and k for the second slope, the 

dispersion around the median values is largely more pronounced. 

ZIP and NB models have the best performance according to root 

mean square error values (Table 2).  

Figure 4. Boxplot of relative errors for Poisson 
model and its extensions: case of 2 covariates  (𝛽0= 
0.14, 𝛽1=0.063 and 𝛽𝟐= -0.15   ) 

n k Poisson 
Quasi-

Poisson 

Negative 

binomial 
ZIP LM 

25 2 2 2 5 3 1 

25 4 3 3 5 1 2 

25 8 2 2 4 1 5 

25 10 2 2 4 1 5 

25 12 2 2 4 1 5 

25 20 2 2 3 1 5 

50 2 2 2 5 4 1 

50 4 2 2 5 2 1 

50 8 2 2 4 2 5 

50 10 2 2 4 2 5 

50 12 2 2 4 1 5 

50 20 3 3 2 1 5 

100 2 3 3 1 4 2 

100 4 3 3 1 3 2 

100 8 2 2 1 2 5 

100 10 2 2 1 2 5 

100 12 2 2 1 2 5 

100 20 2 2 1 2 5 

500 2 2 2 1 3 3 

500 4 2 2 1 5 3 

500 8 2 2 1 5 4 

500 10 2 2 1 5 4 

500 12 2 2 1 5 4 

500 20 2 2 1 5 4 

1000 2 2 2 1 5 3 

1000 4 2 2 1 5 4 

1000 8 2 2 1 5 4 

1000 10 2 2 1 5 4 

1000 12 2 2 1 5 4 

1000 20 2 2 1 5 4 

Table 2.  Median ranks of Poisson  

model and its extensions according 
 to the RMSE values: case of 2 covariate s 

• The rank of each model for the combinations of n and p on the  

basis of AIC is  presented in Table 3 and 4, respectively for 1 and 2 

covariates. Zero inflated models (ZIP and ZINB) show the best performance.  

n p Poisson 
Negative 

binomial 
ZIP ZINB 

25 0.2 4 3 1 2 

25 0.4 4 3 1 2 

25 0.6 4 3 1 2 

25 0.8 4 3 1 2 

50 0.2 4 3 1 2 

50 0.4 4 3 1 2 

50 0.6 4 3 1 2 

50 0.8 4 3 1 2 

100 0.2 4 3 1 2 

100 0.4 4 3 1 2 

100 0.6 4 3 1 2 

100 0.8 4 3 1 2 

500 0.2 4 3 1 2 

500 0.4 4 3 1 2 

500 0.6 4 3 1 2 

500 0.8 4 3 1 2 

1000 0.2 4 3 1 2 

1000 0.4 4 3 1 2 

1000 0.6 4 3 1 2 

1000 0.8 4 3 1 2 

n p Poisson 
Negative 

binomial 
ZIP ZINB 

25 0.2 1 3 2 4 

25 0.4 2 3 1 4 

25 0.6 4 2 1 3 

25 0.8 4 3 1 2 

50 0.2 1 3 2 4 

50 0.4 4 2 1 3 

50 0.6 4 2 1 3 

50 0.8 4 2 1 3 

100 0.2 3 2 1 4 

100 0.4 4 2 1 3 

100 0.6 4 3 1 2 

100 0.8 4 2 1 3 

500 0.2 4 3 1 2 

500 0.4 4 3 1 2 

500 0.6 4 3 1 2 

500 0.8 4 3 1 2 

1000 0.2 4 3 1 2 

1000 0.4 4 3 1 2 

1000 0.6 4 3 1 2 

1000 0.8 4 3 1 2 

Table 3. Ranks of models according  

to the AIC values: case of 1 covariate  
Table 4. Ranks of models according  

to the AIC values: case of 2 covariates  

Contact: bruno.lokonon@labef-uac.org 

• Inspection on the pineapple data shows the following traits: more than 50 % of the observation do not contain any affected plants, indicating that the  

proportion of zeros is p=0.5. The sample size is n=45, and two covariates have been used. Considering all these traits in the data and according to the results 

obtain from the simulation study, it appears that the zero inflated models are the best models to fit the data, especially the ZIP model. These results are similar 

to those obtained by applying the GLM on the pineapple data. 

k and p are introduced in the 

population data 
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Abstract

First,  I  present  definitions  of  the  economic  concept  of  competitiveness.  Then  I  define  the 
statistical  notion  of  robustness.  Finally,  I  will  present  conceptual  similarities  between  the 
economic competitiveness and the statistical robustness.

Key  Words: Competitiveness,  indicators  of  competitiveness,  official  statistics,  statistical 
robustness, relative efficiency, break down point, influence function, sensitivity curve. 

1. Introduction 

With the current ideological triumph of economic liberalism  (Fukuyama, 1992) illustrated by its 
adoption by almost  all  countries  in  the  World,  the  competitiveness  has become a concept  in 
fashion in the decision-makers environment.  Indeed, the competitiveness notion is only present 
in the competitive context of  a free market.  It  is an economic concept,  which presents some  
analogies with the statistical notion of robustness. So in that brief vulgarization paper organized 
in  three  sections,  I  will  mention  some  definitions  of  competitiveness  and  then  those  of  its 
indicators. Second, I will present the statistical robustness and its measures. Finally I will draw 
some parallels between the economic notion of competitiveness and the statistical concept  of  
robustness.

2. Definitions 

2.1 Competitiveness 

There are several definitions of competitiveness (McFetridge, 1995). One of those definitions is 
intrinsic to the etymology of the concept. We define the competitiveness of a corporation, of an  
economic sector or of a country as its aptitude to resist to the competition (McFetridge, 1995;  
CEA,  2004).  However  in  order  to  take  into  account  the  concerns  related  to  sustainable 
development, some authors (Fontagné, 2004; [10], 2006) propose a less contentious definition of 
a country’s competitiveness. The latter is therefore defined as the country’s capacity to attract 
investors on one hand (Mintz, 1993), and on the other hand as the sum of means mobilized by the  
state in order to improve and maximize in a sustainable way the well-being of its population 
(Mintz, 1993; McFetridge, 1995).  This requires a high growth rate of real income, an increase of 
the  state  productivity  relatively  to  that  of  similar  economies  and  a  high  employment  rate 
(Markusen,  1992).  The  current  and  consensual  definition  of  a  country’s  competitiveness 
(http://reports.weforum.org/global-competitiveness-report-2015-2016/what-competitiveness-is-
1 The early version of that paper was written when the author was National Director of Statistics at the Nigerien  
Ministry of  National  Competitiveness and Struggle against  High Cost Life jointly with his teaching and research  
position at the university.

1

122 sciencesconf.org:sada2016:116194



and-why-it-matters/) is ‘the set of institutions, policies, and factors that determine the level of 
productivity of a country’. The competitiveness of a country’s enterprises implies that of this  
country but  a  country can be competitive  without  competitive  enterprises.  We can study the 
competitiveness of a country by considering the prices, costs and structures of its production, or  
the  general  attractiveness  of  its  economy  ([10],  2006).  We  speak  in  the  first  case  of 
competitiveness price and in the second case of qualitative competitiveness. In that current era of  
information featured by a massive generation of big data (Tukey, 1962; Donoho, 2001; ASA,  
2014), the decision-makers are using indicators of competitiveness in order to establish relative  
comparisons between countries, economic sectors or enterprises.

2.2  Competitiveness indicators 

The  competitiveness  indicators  quantify  the  economic  performance  of  an  enterprise,  of  an 
economic  sector  of  an  activity  or  of  a  country.  Consequently,  there  are  three  types  of  
competitiveness indicators, related respectively to the economic performance of an enterprise, an 
activity sector, or a country (McFetridge, 1995). In order to measure the competitiveness of a 
country, there are hundreds of indicators (Debonneuil&Fontagné, 2003; Fontagné, 2004; Hatem, 
2004)  as  HDI  (Human Development  Index),  GCI  (Growth  Competitiveness  Index)  and CCI 
(Current Competitiveness Index), both replaced since 2005 by the GCI (Global Competitiveness 
Index)  (Sala-i-Martin  and  Artadi,  2004;  http://reports.weforum.org/global-competitiveness-
report-2015-2016/introduction-2/).  This  requires  a  careful  choice  of  reliable  indicators 
(Debonneuil&Fontagné,  2003),  similar  to  the  selection  of  variables  in  a  high  dimensionality 
setting. For enterprises or economic sectors, about twelve competitiveness indicators are available 
(McFetridge, 1995) like the Revealed Comparative Advantage Index (Porter, 1990). Formally,  
whether  it  is  matter  to  a  country  or  economic  sector  or  enterprise,  the  competitiveness  is 
quantified by a univariate or multivariate indicator called competitiveness index. It is defined by:  

(1)    ).........( 1 nn i,i=I  where each  n=j,i j 1,....  is an elementary indicator generally an 
empirical mean of real values, and n is the number of these elementary indicators. The latter can 
be qualitative ordinal. In order to make comparisons between countries, enterprises or economic 
sectors,  we  use  therefore  the  elementary  indicators  n;=j,i j 1,... or  we  build  a  composite 
indicator also called synthetic or global or univariate index of competitiveness:

(2)      ).........()()( 1 nnC i,if=If=nI   

2.3. Statistical Robustness 

Invented (https://en.wikipedia.org/wiki/Robust_statistics) by Tukey (1960,  1962,  2002),  Huber 
(1964),  and  Hampel  (1968),  the  statistical  concept  of  robustness  studies  the  behaviour  of 
descriptive  parameters  of  random  variables  in  terms  of  estimation  in  the  presence  of  
contamination.  That  is  robust statistical procedures estimate these parameters when there is  a 
small  deviation from classical  statistical  hypotheses.  The latter  are based on the central  limit  
theorem  (https://en.wikipedia.org/wiki/Central_limit_theorem),  or  consist  in  assuming  the 
normality of statistical errors also called noise, or in the absence of outliers. Usually the noise is 
assumed to be additive for the sake of simplicity. The rise in importance of statistical robustness 
is due to the fact that the classical hypotheses are frequently refuted by real data. Indeed, the 
estimators of parameters of a probability distribution are generally biased when there are outliers  
or in the case of abnormality of residual noise, two common situations.
The robust statistical methods (Venables and Ripley, 2002) mostly replace the normal distribution 
by that of Student with five degrees of freedom, or by a complex mixture of other probabilistic  
distributions. The techniques of truncation or winsorization of Tukey (Huber, 2002) lead to robust 

2
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estimators.  The  truncation  method  consists  in  the  removal  of  extreme  values  while  the 
winsorization replaces the  latter.  However the  M-estimators  introduced by Huber  (1964) and 
generalizing  the  estimators  of  maximum  likelihood  constitute  an  important  class  of  robust 
estimators, which is currently the preferred method.
In  addition  to  the  relative  efficiency  that  is  the  ratio  of  the  variances  of  two  competitive 
estimators (Venables and Ripley, 2002; Huber and Ronchetti, 2009), we quantify the robustness 
by using the notion of Hampel break down point (1968), the influence function (Hampel, 1968) 
or the sensitivity curve of Tukey (Huber, 2002). The break down point is the maximal percentage 
of outliers that can be tolerated by the estimator. For example the median has a breakdown point  
of 50% while the mean breakdown point is 0%. The influence function that is the limit of the 
sensitivity curve (Huber and Ronchetti, 2009) measures the reaction of an estimator to a small  
proportion  of  outliers.  Conceptually,  the  robust  statistics  present  some  analogies  with  the 
economic notion of competitiveness.

3. Analogies between the economic notion of competitiveness and the statistical concept of  
robustness  

As the elementary or synthetic indicators of competitiveness are generally empirical means or at  
least regular functions of arithmetic means, a concern about their robustness is raised. Indeed it is  
well- known that the median for example is more robust than the arithmetic mean. However, here  
our  preoccupation  is  not  to  study  the  statistical  robustness  of  different  indicators  of 
competitiveness because it was done elsewhere (See Debonneuil&Fontagné, 2003; Hatem, 2004). 
It is rather to study the conceptual similarity, to draw a parallel, between the economic notion of  
competitiveness and the statistical  concept  of robustness. It’s like to draw a parallel between 
abstract paintings and pure mathematics, both are dealing with the formalization of reality.   

The first conceptual analogy between the competitiveness and the statistical robustness is their  
definition that is the capacity to resist to a competitive environment for the former and to the  
small deviation from classical hypotheses for the latter. Indeed, the competitiveness of a country,  
of  an  economic  sector  or  of  an  enterprise  is  subject  to  destabilizing external  and/or  internal 
factors (CEA, 2004). A basic economic unit is therefore competitive if its performance is less  
affected by the above evoked factors, because it is able to quickly reorganise itself in order to  
adapt  to these new deals.  Likewise a statistic that  is  a function of a sample,  for  instance an 
estimator or a statistical procedure, for example an hypothesis testing, is robust if it resists to 
sudden changes of sample values, that is if its estimation is not affected by the outliers

The second conceptual similarity between the competitiveness and the statistical robustness is the 
use of a basic unit, that is a country, a firm or an economic sector for the former and statistic  
(function of a sample) for instance an estimator or statistical procedure for the latter. A set of  
basic  units  is  then  compared by using  economical  or  statistical  criteria.  Thus,  a  country,  an 
economic sector or an enterprise is always competitive relatively to other countries, economic 
sectors or enterprises. Likewise a statistic for example an estimator or a statistical procedure is 
optimal  compared  to  others  statistics,  estimators  or  statistical  procedures.   Therefore  the 
competitiveness and the robustness are not absolute, self-sufficient concepts.

The third conceptual similarity between the competitiveness and the statistical robustness is the 
use  of  criteria  in  order  to  compare  basic  economic  or  statistical  units.  The ranking  of  basic 
economic  units  like  firms,  economic  sectors  or  countries  is  achieved  by  that  of  indicators.  
Concerning a statistic for instance an estimator,  it  is  robust  if  it  is  optimal in terms of bias,  
variance, influence function, break down point and sensitivity curve face to other statistics or 

3
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estimators. The similarities between the economic concept of competitiveness and the statistical  
notion of robustness can be resumed in the following table.

Economic Competitiveness Statistical robustness

Basic unit Firm, economic sector, country Statistic, estimator, statistical 
procedure

Definition Capacity to resist to a 
competitive environment

Capacity to resist  to the small 
deviation from classical 
hypotheses

Measure Indicators Relative efficiency, break 
down point, influence function, 
sensitivity curve

Reception by the public Popular among decision-
makers but not among the 
practitioners

Confidentially used by some 
statistical practitioners

4. Conclusion

The economic concept of competitiveness presents a strong analogy with the statistical notion of  
robustness in terms of definition and of the use of criteria to rank economic or statistical units.  
Moreover,  like  robust  statistics  whose  use  is  still  limited  in  practice,  the  notion  of 
competitiveness  raises  sometimes  fierce  opposition  (Krugman,  1994)  in  the  economic 
environment. However,  whereas the definition of competitiveness and that  of  its  indicators is 
fluctuating, the statistical robustness and its measure are well-defined and less subjective. There 
is also a unidirectional bridge between these two concepts. Indeed the notion of competitiveness 
uses  implicitly  statistics  through  indicators  of  competitiveness.  The  latter  pretend  to  resume 
economic information by using statistical parameters. Both competitiveness and robustness are  
challenged  by  the  rapidly  changing  world.  Competitiveness  is  constantly  updated 
(http://reports.weforum.org/global-competitiveness-report-2015-2016/introduction-2/)  because 
the economic paradigm is frequently challenged by the continuous technological revolution, the 
social mutations and the flow of data and big data. Robust statistics is challenged also by that era 
of data and big data with the blessings and curse of dimensionality (Donoho, 2000). 
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1 Introduction 
 Since the early application of predictive discriminant analysis (PDA) in education by 
methodologists in Harvard University in the 1950s and 1960s, it has become a widely used 
analytical tool for academic predictions till date. PDA is a predictive multivariate technique for 
classifying subjects into one of several groups.  Selection of key predictor variables in classical 
statistical procedures such as PDA not only leads to identification of key predictor variables 
which separate the groups well, but also frequently improves prediction or classification 
accuracy (Huberty and Olejnik 2006). But the predictive validity of the PDF, in the context of 
academic prediction can best be evaluated based on the relevance of the selected key variable 
to the PDF underlying construct and/or study objective. This is not provided by existing 
variables selection methods.   
 In PDA, the first step towards building a predictive discriminant function (PDF) is to 
select useful list of predictors. Notable criteria that have been used in obtaining a useful list of 
variables for consideration as initial choice of predictors are based on substantive theory and 
prior research (Huberty 1974), expert opinion (Lacey et al., 2007) and Personal judgment (Liao 
and Lynn 2010). This is an easier-said-than-done situation, of course. Limited knowledge and 
resources sometimes prelude the researcher from including all relevant predictors and from 
excluding all irrelevant predictors (Huberty and Olejnik, 2006).  
 In order to obtain a final predictor subset of key predictor variables, researchers then 
employ variable selection methods. Over the past four decades, extensive research into 
variable selection has been conducted. We have the classical methods such as the stepwise 
method (Drasper and Smith 1981), and all possible subset method (Huberty and Olejnik 2006). 
Besides the classical methods, a range of other approaches includes the genetic search 
algorithms wrapped around Fisher discriminant analysis by Chiang and Pell (2004), variable 
selection for kernel Fisher discriminant analysis (Louw and Steep 2006), DALASS approach of 
Trendaflov and Jollife (2007), and the efficient search algorithm (proposed as alternatives to 
backward/forward/stepwise and all possible subset search) by Iduseri and Osemwenkhae 
(2015). In assessing relative importance of selected key predictors, major indexes used include 
standardized weight, variable-PDF correlation, and group separation.  
 All the above mentioned variable selection methods mainly focuses on  identifying key 
predictors or factors, as well as assessing their relative importance. These approaches neither 
assess relevance in the context of the PDF underlying construct, nor in the context of the study 
objective. In other words, these methods lack the basic qualities desired in a criterion measure 
such as “relevance” and “reliability” (Aggarwal 2012). In academic prediction the use of 
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construct validity is usually designed to provide answers to questions like: What does the 
discriminant score tell us about the individual”? “Does it correspond to some meaningful trait 
or construct that will help us in understanding or interpreting the PDF? In the context of 
academic prediction, the existing approaches do not provide answers to these pertinent 
questions raised. Herein lies the problem. Therefore, having an encompassing approach that 
will provide answers to these questions will be of great importance to researchers using PDA as 
analytical tool especially in academic prediction. 
 

2 The Proposed Approach  
 Our interest here was to provide a simple algorithm for obtaining a final subset of key 
predictors that are relevant to the PDF underlying construct and/or study objective. The outline 
of the proposed approach is described as follows: 

 Suppose we are given a data set (or a historical sample, ND ) that consists of N 

samples   N

iii yx 1,  , where  Pxi ,...,2,1  denote the corresponding predictor variable 

label,  Kyi ,...,2,1  denote the corresponding group label, P is the number of predictor 

variables, and K is the number of groups. Let   NP

NN xxxD  ,...,, 21
 be the historical 

sample data matrix. Also, let knP

nD


  be the historical data matrix of the kth group, where 

nk is the sample size of the kth group, and



K

k

k nn
1

. 

Step 1: From ND , Obtain training set,  tI using systematic assigning of observations.  

Step 2: For each training sample,  t
nD obtained in step 1, we compute a PDF, Z using Stepwise 

 option as criterion by which the key predictors would be included in the PDF, Z defined 
 as 

 **

22

*

11 ... PpxuxuxuZ   

         t

nD           (1) 

 where Z is the PDF, iu  are the discriminant weights, *

ix  are the selected key predictor 

 variables and   t

nD  indicates that the PDF is calibrated on a training sample. If the 

 linear combination of the selected key predictors for each  computed Z  are all the 
 same, then the observed consistency serves as a criterion for validation of the selected 
 subset of key variables relevance to PDF underlying Construct. 
Step 3: If the linear combination of the selected key predictors for each computed Z  are not 
 the same, then a joint profiling of the selected subset of key predictors for each 
 computed Z  is analyzed based on relevance to the study objective(s). This step both 
 serves as a criterion for choosing the subset of key predictors that is relevant to the PDF 
 underlying construct and study objective. 
 

3 Computational Results and Discussion  
 The performance of the proposed approach is investigated by analyzing four real data 
sets of two group of students with the aim of identifying major prerequisite for success in 
industrial mathematics as a course of study in a university system. Each training sample has 
nine (9) predictors and a total of forty (40) students whose group memberships (in terms of 
graduating class of degree) were established. For the four PDFS obtained, the SPSS 16 outputs 
for their standardized coefficients, construct coefficients, and the overall prediction accuracy 
for the cross-validated group cases are shown in Tables 1 - 4. 
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Table 1: Canonical Variates and Hit Rate for Training Sample 1 

Key Predictor Variables Standardized Coef. Construct Coef. LOOCV Hit-Rate (%)  

MTH214 
MTH222 
MTH229 

0.463 
0.604 
0.547 

0.521 
0.649 
0.670 

87.5 

     229547.0222604.0214463.01 MTHMTHMTHZ   
 
Table 2: Canonical Variates and Hit Rate for Training Sample 2 

Key Predictor Variables Standardized Coef. Construct Coef. LOOCV Hit-Rate (%)  

MTH227 
MTH229 

0.894 
0.478 

0.878 
0.229 

90.0 

   229478.0227894.02 MTHMTHZ   
  
Table 3: Canonical Variates and Hit Rate for Training Sample 3 

Key Predictor Variables Standardized Coef. Construct Coef. LOOCV Hit-Rate (%)  

MTH218 
MTH219 

0.638 
0.687 

0.733 
0.775 

87.5 

   219687.0218638.03 MTHMTHZ   
 
Table 4: Canonical Variates and Hit Rate for Training Sample 4 

Key Predictor Variables Standardized Coef. Construct Coef. LOOCV Hit-Rate (%)  

MTH212 
MTH219 
MTH229 

-0.482 
0.882 
0.689 

0.141 
0.744 
0.598 

92.5 

     229689.0219882.0212482.04 MTHMTHMTHZ   
 
In Tables 1 to 4, Column 1 shows the selected key predictor variables that make up the linear 
combination of the four obtained PDFs (i.e., Z1, Z2, Z3 and Z4), using the four training samples.  
Examination of Tables 1 and 4, shows that a subset of three predictors were chosen as key 
predictors, while Tables 2 and 3 shows that a subset of two predictors were chosen as key 
predictors. Examination of Tables 1 to 4 shows that all the subsets are all different from each 
other in terms of the linear combination of the predictor variable. Therefore, the observed 
inconsistency raises a question. That is, which of these subsets of key predictors are more 
relevant to the study objective? Column two of Tables 1 to 4 presents the discriminant weights 
associated with each selected key predictor, while column 3 presents their respective structure 
coefficients. A cursory look at Tables 1 to 4 shows that the values of these estimates are all 
essentially equivalent in each of the Tables. This observed consistency is an indication that the 
four subsets of key predictors are jointly effective and useful major prerequisites that have 
relationship with performance in Industrial Mathematics as a course of study. This raises the 
question again. That is, which of these subsets of key predictors are more relevant to the study 
objective? Lastly, the estimates of the actual hit rates for the four PDFs shown in column four of 
Tables 1 to 4 is better than expected percent.  This obvious high degree of accuracy exhibited 
by the four PDFs gives enough reason to have accepted the predictors of any of the four 
subsets as the key predictors that have relationship with performance in Industrial 
Mathematics as a course of study if only one subset was available.  
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 In order to provide answer to the pertinent questions raised above, we employ a 
‘profiling’ approach (i.e., Step 4 of the proposed algorithm). To achieve this, the objective of 
each selected key predictor variable’s description was analyzed in terms of its relevance to the 
programme or course of study objective(s) using the Programme or Department’s prospectus. 
Base on the programme main objective, only the combination of MTH218 and MTH219 
intended goals is best relevant in terms of achieving the programme objective. Therefore, the 
PDF, Z3 underlying construct can be interpreted in terms of a discriminant score value. That is, a 
student discriminant score that is higher than the cutoff mark indicates a good understanding 
of their concepts (i.e., MTH218 and MTH219). Hence, having a discriminant score above the 
cutoff mark is a panacea for success in Industrial Mathematics as a course of study. However, 
this may not be the case for other universities offering Industrial Mathematics as a course of 
study. This is because the course description for MTH218 and MTH219 may differ from one 
university to another. Hence, a different course or courses other than MTH218 and MTH219 
may be a panacea for success in Industrial Mathematics using the profiling criterion. 
 

4. Conclusion 
 The observed essentially equivalent results obtained for the subsets of key predictors 
obtained from the four training samples confirms the fact that results of key variable selection 
methods (in particular stepwise search) should only be considered descriptive for the training 
sample used. That is, inferences about the key variable importance should be made with great 
caution. In the context of academic prediction, valid generalizations may be obtained only to 
the extent that a criterion for validation of the selected key predictor variables (or assessing the 
key predictors’ relevance to the study objective) had been incorporated into the steps involved 
in training the PDF. 
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Abstract

The non-inferiority test procedure with the binary endpoint has been developed in the

literature for fix margin, linear and nonlinear margin. Most of author agreed that the

margin is a function of reference treatment. However, when the endpoint is continuous,

most test procedures that have been developed consider the cases when the margin is

fixed or linear. In this work, is proposed non-inferiority test procedures with variable

margin when the primary endpoint is continuous and based on mean difference. It has

been proposed a test procedure based on confidence interval. The type I error has been

computed according to the level of confidence interval. The simulation results show

that the the type I error is a decreasing function of confidence interval level and has

a convex curve. For the considered case, the confidence interval should lies between

83% and 89% for the 5% nominal type I error.
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Abstract  

An important number of programs based on different methods and algorithms exists for 

estimation of population pharmacokinetic parameters and predictive performance of 

models with sparse dataset. These methods differ in the way they express the parameter 

distribution and maybe influence clinical decisions and safe drugs. Thus, the goal of this 

work was to analyze the behavior of nonparametric method using exact likelihood function 

(NonParametric Adaptive Grid, NPAG) compare to parametric method that using 

approximate likelihood functions (First-Order Conditional Estimation, FOCE) in R 

software with sparse PK data.One compartment model with intravenous bolus 

administration was used to describe the pharmacokinetics of phenobarbital (Grasela and 

Donn, 1985). These tow algorithms were used to estimate the PK parameters (Clearance, 

CL and Volume of distribution, VL). Analysis of statistic properties such as OF, AIC, BIC, 

bias, precision and convergence time, apart from validation criteria of final model reveal 

that NPAG presents the statistic predictive properties consistent with sparse data for 

estimating PK parameters than FOCE and is able to detect some subpopulations and 

outliers. Its default is the relatively large runtime to attain the convergence. But, both 

methods statically give the same predict individual performance and differ at population 

level with median difference value of 3.86 µg/l. 
Keywords: Population PK parameters, estimation, NPAG and FOCE. 

Introduction  

To undertake a pharmacokinetic study, one needed to collect pharmacokinetic (PK) data for 

each individual i (i=1,…, N), where N represents the sample size, they include the dosing 

history (amount and time of drug administration), values of clinically relevant covariates (e.g. 

sex, age, weight, renal pathology, etc.), measured drug concentration in the blood or in the 

plasma, noted Yi = {Y1... YN} following several measurement time,ti, containing ti1 … tini 

(observation sampling). The analysis of these data provides crucial information in early and 

late clinical development stage or post-marketing development and it results are used to 

support decisions in drug therapy (Etteet al. 2001; EMEA, 2006, LPQK, 2008, Dykstra et al. 

2015). 

It exists two categories of PK data: (i) rich data, which involve many observations per 

individuals, most of the time greater than 6 and are obtained at the phase I and II of drug 

development; (ii) sparse data, have few observationsper individuals and are obtained at the 

Phase III of drug development or during a clinical essay on neonates, critically illpatients 

andolder people etc(Vinkset al. 1996; Jawinet al. 2008; Xiao-huiet al. 2014). Therefore, two 

fundamental approaches exist for PK parameters estimation (Arianoet al. 2012; Xiao-hui et al. 

2014) knowing as clearance, distribution volume, etc.: traditional approach (for rich data) and 

population approach (for sparse data).  

The models used to estimate PK parameters with population approach often fail to support 

models derived in the rich data (Aarons et al. 1996; Flynn et al. 2006; Ariano et al. 2012; 

Xiao-hui et al. 2014). Thus, an important number of programs based on different methods and 

algorithms are been developed and used (Jawin et al. 2008; Ibnu et al. 2009), which may 

influence clinical decisions and safe drugs (Hooker et al. 2007). The main question is which 
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of methods and algorithms gives the best performance with sparse data in order to guarantee 

the precision of PK parameters estimation? Thus, in our case of this study, the research 

question is 

between nonparametric method calculating exact likelihood function (NPAG) and parametric 

method approximating likelihood functions (FOCE), which is better for a good population PK 

parameters estimation with sparse data? 

Material and Methods 

Data and structural model type 

The data used have concerned 59 children who received multipledoses of phenobarbital which 

prevents them from seizures. The number of concentration measurements per neonate infant 

varies between 1 and 6 with an average of observation number per individual of 2.69 ± 

0.49.One compartment model with intravenous bolus administration and first order 

elimination was used to describe the pharmacokinetics of phenobarbital (Grasela and Donn, 

1985); Nguyen et al. 2010) as follows: 

nijt
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xf iiji
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iii ...1),/.exp(),( 21
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  (1.1) 

where the vector ix  represents the known experimental design of phenobarbital drug di, 

which is consisted of the dose administrated D at time 0 and the measurement times tij 

containing        ti1 … tinimeasures. The vector i  regroups 2 random effects are: the clearance 

( 1i ), which accounts for the i
th

individual’s elimination flow of phenobarbital distribution and 

the volume of distribution ( 2i ), it holds for the i
th

 individual’s drug extend in the body.  

Estimation of PK parameters  

Implementation for Pk parameters estimation 

NPAG and FOCE were used to estimate the PK parameters and implemented in R using 

“Pmetrics” and “nlme” packages respectively. 

Statistical sub-model for FOCE method  

The statistical sub-model informs about two levels of random effects: inter-individual 

variability and residual variability. The inter-individual variability of clearance and volume of 

distribution was modeled as additive and proportional, and then described by coefficient of 

variation. In concerning to within subject variability (residual variability), it based on 

heteroscedastic error. The expression of variance model of this error is
2

1

2 )| |.()( 2 ijijVar  ,where σ
2
 is the variance of with-group error random variable, δ1 

and δ2 are variance parameters and |νij| is the covariate.  

Statistical sub-model for NPAG method 

In the NPAG modeling procedure, each drug concentration was weighted by the reciprocal of 

the assay variance at that concentration. The overall assay error pattern was described by a 

second-order polynomial: SD(Yi) =C0 + C1.[Yi] + 0C2.[Yi]
2
 + C3.[Yi]

3
, where SD(Yi) is the 

predicted assay standard deviation for the measured concentration Yi.  Then was used a 

multiplicative error model, error = SD(Yi)*gamma. In addition, we fixed gamma values to 1; 

for well-designing and executing studies with data (LAPK, 2012). This value suggests that 

there is no other source of variability than the assay.  
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Covariate sub-models for NPAG and FOCE methods 

Linear relation was explored between the covariate (birth weight,Kg) and each PK parameter. 

A significance level of 0.001 is usedwith t test to allow inclusion this potential covariate. It is 

retainedas clinically meaningful covariate in the final. 

Final models for NPAG and FOCE methods 

The final model is established in taking into account the covariate which significantly 

influences the fixed parameters. 

Validation of final model obtain by NPAG and FOCE methods 

Numerical validation 

For the validation of the final model was computed the difference of the objective function 

value (∆OF); (ii) coefficient of determination between observed concentrations and predicted 

concentrations; (iii) bias and precision were used as measures of predictive performance 

for both methods at population and individual levels (Sheiner and Beal, 1981; Harling and 

Nordgren, 2014). 

Visual validation 

Validation plots such as: visual predictive check plot, normalized prediction distribution 

errors (NPDE) and global uniform distance but was only performed for FOCE method. 

Statistical comparison of NPAG method to FOCE method. 

For the comparison, the following criteria are computed: 

 Mann Whitney test was used to compare these two methods at individual and 

population predicted parameters concentrations levels 

 Relative mean error (ME, %) and relative root mean squared error (RMSE, %) of the 

individual and population parameter estimates were computed and used as an indicator 

of bias and imprecision for the comparison of predictive performance. 

 Goodness of fit of final model obtained by the both methods was evaluated using the 

likelihood-derived as Akaike information criterion (AIC), Baysian information 

criterion (BIC) and objection function (OF). 

 Runtime needed to attend the convergence of each method was computed and 

compared. 

Results  

Both of the two methods statistically give the same predict individual performance but 

differ at population level with median difference value of 3.86 µg/l. The best runtime to 

reach the convergence is obtained by FOCE after 4 iterations while the difference with 

NPAG (87 iterations) is of 1:46,81 (Table 1). 

Table 1. Outcome of nonparametric comparison test, Mann-Whitney and Runtime 

 

 

 

 
 

Processor Inter ® Core i7 CPU 2.4 GHZ; RAM 4Go, Type of system 64 bits 

FOCE method presents the lower values of bias and precision (Table 2) but examination of 

probability densities plots and boxplots of PK parameters (CL and V) distribution show a 

non-normal distribution with subpopulations or outliers (Figures 1 and 2). 

NPAG is the best method because it gave the lowest values of OF, AIC and BIC (Table 2). 
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Con

clusio

n 

One of these methods can be used for estimating 

individual PK parameters. But NAPG presents the 

statistic predictive properties consistent with sparse data 

for estimating PK parameters than FOCE and is able to detect some subpopulations and 

outliers. Its default has relatively large run time to attain the convergence. Studies on 

Influence of the sample size and the number of sampling points upon the quality of 

pharmacokinetic modeling and neonate population parameters estimation are required to 

make a good biomedical decision.  
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Abstract 

In this study we consider the problem of classifying a new observation intoone of the known groups 

(𝜋𝑖  , i = 1, 2) independently distributed multivariate normal when both groups are described by 

equal mean vectors. The small sample size and large number of parameters performance of four 

equalmean discriminant functions (Bartlett and Please method (BPM), BayesianPosterior Probability 

Approach (BPPA), Quadratic Discriminant Function(QDF) and Absolute Euclidean Distance Classifier 

(AEDC) were evaluatedin classifying observations from two 𝑁(𝜇𝑖 , )𝑝×𝑝  p = 10 groups with 𝜇1 = 𝜇2. 

The performance evaluation was based on simulated data using reported Balanced and Cross 

Validation error rates. The BPPA outperformed the other functions. Female liked sex twinsdata 

extracted from Stocks (1933) twindata was used for validation and the results obtained were 

consistent withthe simulation study. 

 

Keywords: Bartlett and Please method, Posterior Probability Approach, Quadratic Discriminant 

Function, Absolute Euclidean Distance Classifier 
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ABSTRACT 

Volatility clustering and leptokurtosis are commonly observed in financial time series (Mandebrot 1963). 

Another phenomenon often encountered is the so called leverage effect (Black 1976), which occurs 

when stocks prices change are negatively correlated with changes in volatility. Observation of this type 

in financial time series have led to the use of a wide range of varying variance models to estimate and 

predict volatility. In his seminal paper, Engle (1982) proposed to model time-varying conditional 

variance with Autoregressive Conditional Heteroskedasticity (ARCH) processes using lagged 

disturbances; Empirical evidence based on his work showed that a high ARCH order is needed to capture 

the dynamic behaviour of conditional variance. The Generalized ARCH (GARCH) model of Bollerslev 

(1986) fulfils this requirement as it is based on an infinite ARCH specification which reduces the number 

of estimated parameters from infinity to two.  

Both the ARCH and GARCH models capture volatility clustering and Leptokurtosis, but as their 

distribution is symmetric. Another problem encountered when using GARCH models is that they do not 

always fully embrace the thick tails property of high frequency financial times series. To overcome this 

drawback Bollerslev (1987), Baille and Bollerslev (1987) and Beine et al (2002) have used the Student’s t- 

distribution. Similarly to capture skewness Liu and Brorsen (1995) used an asymmetric stable density. To 

model both skewness and kurtosis Fernandez and Steel (1998) used the skewed Student’s t-distribution.  

The disadvantage of the normal GARCH (1,1) model is that the conditional excess kurtosis is 

zero,  and both unconditional and conditional skewness are zero, thus, volatility clustering , leverage 

effect  and leptokurtosis cannot be capture adequately. This work intends to re-modify error 

distributions of GARCH ( p, q) model inference under violation of normality in favour of some think-

tailed distributions.  

The data consist of 180 monthly observations of the NSE Stock Index from period January 2000 to 

December 2015  which was obtained from statistical  Central Bank of Nigeria  Bulletins 2016. To 
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estimate and forecast this index, we use GARCHFIT in  R package. Initially the assets prices are 

transformed into log return series,          , given by 

                                                                                                          

 

Where  Yt is All Share Index (ASI) for day t,  Then Autoregressive model 

                                                    is estimated for the return series.  The error terms follows Normal , Skewed 

Normal, Student-t , Skewed-t, GED, Skewed GED ,  newly proposed Generalized length biased scale t and 

Generalized Beta Skew –t Distributions. We also consider GARCH (1,1) model as the variant model. 

  

  

The generalized length biased distribution is derived when the weighted function depend on the length 

of units of interest (i.e.  w(y) = y) . If we consider the variance equation to be GARCH (1,1) model and 

Mean Equation to be AR(1)  then the log likelihood from the generalized length biased distribution is  

  

 

 

The generalized beta distribution of the first kind was introduced by McDonald (1984), with link function  

 

 A random variable y is said to have a Generalized Beta Skewed –t distribution if 
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 If we assume that                                                     , we have 

 

 

Considering Mean Equation as AR (1) Model and Variance Equation as GARCH (1,1) Model then the log 

likelihood from the generalized beta Skew t  distribution is  

 

 

 

The basic estimation model consist of two equations, one for the mean which is a simple autoregressive 

AR(1) model and another for the variance which is identified by a particular ARCH specification i.e. 

GARCH (1,1). For NSI the models are estimated using R code by the approximate quasi- maximum 

likelihood estimator assuming normal, skewed normal, student t, skewed student t , GED , skewed 

Student-t , Generalized Length Biased Scale-t and Generalized Beta Skewed-t errors. Convergence could 

not be reached with a GARCH (1,1)  Length biased Scaled-t Model. Therefore we use other eight 

innovations. To compare the different densities with model we apply the Akaike  Information Criterion 

(AIC) and the log likelihood value. When we analyze the densities we find that beta skewed-t 

distribution clearly out performed the normal distribution. Indeed the log likelihood function increases 

when using the beta skewed-t distribution, leading to AIC criteria of -2.49193 and and 1.2523  for 

normal density.  

 The forecasting performance of GARCH (1,1) model  was compared using different distributions for 

Nigeria Stock Index returns. We found that the GARCH(1,1) – Beta Skewed-t model is the most 

promising for characterizing the dynamic behaviour of these returns as it reflects their underlying 

process in terms of serial correlation, asymmetric volatility clustering and leptokurtic innovation. 
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 The proposed new error innovations will be extended to other extensions of  Asymmetric GARCH model 

like EGARCH, APARCH, GJR , IPARCH etc 
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1. Introduction 
Since 1971 Cameroon has experienced 

several outbreaks of Cholera, the most 

important was in 2011 with a record number 

of deaths. Epidemiological studies have 

shown poor hygienic practice such as poor 

food preservation method is associated 

cholera in many regions of Cameroon [1]. 

Other factors such as religious beliefs 

cultural and socio-cultural have also been 

associated with Cholera [2]. An analysis of 

spatial spread of cholera was also conducted 

in the Far North region of Cameroon to 

understand the spatial dynamic of cholera [3]. 

However, none of these studies have been 

conducted nationwide, neither have they 

assessed the periodicity of disease dynamics 

or developed a risk map of cholera outbreaks 

in Cameroon. This study aims to provide 

additional information for an in-depth 

understanding of the spatiotemporal spread of 

cholera in Cameroon. Using epidemiological, 

socio-demographic and environmental data, 

we conducted spatial and temporal statistical 

analysis to achieve a better understands 

patterns of cholera dynamics in Cameroon 

during recent outbreaks. Specifically, we 

identify high risk areas and environmental 

factors associated with the outbreak of the 

disease during 2011 and 2014. 

2. Materials and methods 

2.1. The data 
Number of suspected cases of cholera and 

deaths were recorded weekly; the population 

size and the superficies of each Health 

District (HD) were obtained from the 

epidemiological monitoring system of the 

Ministry of Public Health of Cameroon. 

Others data including rainfall, temperature, 

relief, area of residence (urban / rural) were 

download from satellite remote sensor data. 

2.2. Statistical analysis 
We first mapped attack rates and case fatality 

rates of each year 2011, 2012, 2013 and 

2014. We then evaluated the association 

between temporal evolution of suspected 

cholera cases and precipitation on the one 

hand and temperatures on the other hand. To 

assess the periodicity of occurrence of 

suspected cholera cases, we conducted a 

wavelet analysis, using a continuous wavelet 

whose mother wavelet is the Morlet. 

Verification of a global spatial 

autocorrelation was carried out through the 

Moran's I statistic. In order to perform the 

risk map of cholera, we determined the 

different phases of the epidemic and for each 

phase, we performed a purely spatial 

analysis. Change-point analysis technique by 

binary segmentation algorithm has been used 

to determine the different phases of epidemic. 

For each phase of the epidemic thus obtained, 

we performed an isotonic spatial scanning 

using the Statistical Kulldorff [4]–[6]. We 

finally determined the impact of 

environmental factors (climatic, 

demographic) on the incidence risk of 

disease. For this, we used Generalized 

Additive Models (GAM) [7]. The smoothing 

parameter of our model was determined by 

the method of Generalized Cross Validation 
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(GCV). We used Quasi-Poisson distribution, 

to take account  over-dispersion of data and 

the large number of zero in the data [8]. The 

regression equation used for all phases is: 

   ( (         ))                 

       (        )   (          )  

      (   (           ))( ) 

The detection of clusters was performed 

using the software SaTScan v9.4.2. All other 

analysis were performed using the R software 

v3.2.3 with a fairly large number of packages 

(Changepoint WaveletComp, mgcv, etc.). 

A p-value at the 5% threshold was considered 

statistically significant degree. 

3. Results 
During the study period, the Cameroonian 

territory had 181 Health Districts (HD).  The 

HD reliefs are distributed as follows: the 

plains 60 (33.15%), the trays 39 (21.55%), 

mountains 50 (27.6%) and rugged terrain 33 

(18.2%). We also counted 76 (42%) urban 

and 105 (58%) rural areas. 

The most important outbreaks of suspected 

cases and deaths were recorded in 2011 

(attack rates (AR): 223.4 cases per 100,000 

inhab, case fatality rate (CFR). 3.7%) and 

2014 (AR: 15.5 cases per 100,000 inhab. 

CFR 5.5%). The epidemic has affected all 

regions in 2011 with attack rate very high in 

regions Littoral, West, North and Far North. 

Very few suspected cases cholera was 

recorded between 2012 and 2013 period. 

However, no deaths were reported in 2013. In 

2014, the epidemic is mainly manifested in 

the far north and East of the country. 

By overlapping time series of number of 

suspected cholera cases reported nation-wide, 

precipitation and temperatures, we observed 

a most important outbreak of suspected 

cholera case when the level of rain increased 

or/and temperature decreased. However, 

when there are no cases of cholera, the 

increase of rain level and temperature 

decrease does no lead to the occurrence of 

suspected cases of cholera.  .  

Spectral analysis of the three previous series 

revealed a semestrial and annual periodicity 

for   precipitation, an annual periodicity for 

temperatures, but no periodicity of suspected 

cholera cases during the study period. 

The breaking point analysis revealed three 

major phases of the epidemic: the first phase 

is from January 2011 to November 2011, the 

second phase will from December 2011 to 

May 2014 and the third phase will from May 

2014 to November 2014. The first and third 

phases are major epidemics while second 

phase corresponds to a phase of lull. 

Moran's I was, I = 0.142 (p = 0.6224), I = 

0.156 (p = 0.9676) and I = 0.369 (p = 0.0003) 

respectively for each phase of the epidemic. 

Only the third phase showed significant 

spatial autocorrelation. This is justified by the 

aggregation of HD affected during this last 

phase and dissemination of the HD 

throughout the country during the first two 

phases (Figure 1). This figure shows, for each 

phase of the epidemic, the map of areas with 

high risk of suspected cases cholera 

incidence. 

For phase 1, 40,501 suspected cases of 

cholera were reported (AR: 206.5 per 100000 

inhab; CFR: 3.8%) with four high-risk areas. 

The most high-risk cluster is the Yoko HD in 

the Centre region with a relative risk (RR) of 

66.92 (p <10
-17

). 1B cluster is the second 

high-risk cluster and mainly includes HD in 

Littoral Region while the cluster 1C includes 

the HD at high risk of the far north. 
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Figure 1: Daily incidence rate and spatial clusters and high risk of the different phases of an 

epidemic. 

 

Table 1: environmental risk factors of cholera 

 Phase 1 : Jan 2011 to 

Nov 2011 

 

 

Phase 2 : Dec 2011 to 

Mai 2014 

Phase 3 : May 2014 

to Nov 2014 

SIR   95%IC 

   (p) 

 SIR   95%IC  

     (p) 

SIR  95%IC  

     (p) 

Relief: ref (Plain)        

          Trays 
2.017 

[1.01-4.01] 

(0.0468) 
 3.904 

[1.35-11.28] 

(0.0129) 
1.137 

[0.68-1.88] 

(0.6164) 

          Mountains 
4.460 

[2.26-8.77] 

(2.66 x10
-5

) 
 4.130 

[1.55-10.96] 

(0.0050) 
0.509 

[0.29-0.87] 

(0.0137) 

         Rugged terrain 
1.436 

[0.58-3.50] 

(0.4274) 
 1.369 

[0.38-4.85] 

(0.6278) 
0.242 

[0.11-0.51] 

(0.0002) 

Area : ref (Urban)        

         Rural 
0.478 

[0.27-0.82] 

(0.0088) 
 0.365 

[0.19-0.67] 

(0.0015) 
0.570 

[0.42-0.76] 

(0.0002) 

Density -    p =  1.8x10
-9

  p = 0.0431 

Spatial dispersion of HD  p= 4.2x10
-13

   p =  4.7x10
-10

  p <  2x10
-16
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In Phase 2, 888 suspected cases of cholera 

were reported (AR: 1.1 per 100000 inhab; 

CFR. 3.15%). The cluster 2A contains only 

the HD New Bell in the Littoral region (RR = 

49.79, p <10
-17

). 2B cluster contains Yoko 

and Ntui HD in the Centre region (RR = 

15.97, p <10
-17

). 2C and 2D clusters grouped 

every few HD in the Far North. 

A total of 3171 suspected cases of cholera 

were reported in Phase 3 (AR: 15.3 per 

100000 inhab; CFR. 5.33%) One high-risk 

cluster was detected: the cluster 3A (RR = 

262.03, p. <10
-17

). 

During phase 1, the value of the Standard 

Incidence Ratio (SIR) shown that, the 

incidence risk of suspected cholera cases was  

is two times more l when living on the 

plateau areas that when living in a plain : SIR 

= 2.017. Similarly, SIR = 4.460 when living 

in a mountainous area that when living in a 

plain. Living in a rural area almost halved the 

incidence of suspected cholera cases risk of 

compared to living in urban areas. 

The relief has the same configuration during 

the second phase. The trays and mountains 

are always more at risk than the plains. The 

density also has an uneven effect on the risk 

of cholera. 

During the third phase, the mountains and 

rugged terrain have a protective effect against 

cholera compared to the plains. 

HD located in rural areas have a protective 

effect against cholera compared to those in 

urban areas, regardless of the reporting 

phase. Similarly, the spatial position also has 

a significant effect on the risk cholera on all 

phases. 

4. Discussion 
Following the resurgence of cholera in 

Cameroon and the need to better understand 

the mechanisms of this disease, we studied 

the spatiotemporal dynamics over the period 

from 2011 to 2014. 

After observing the spatial and temporal 

dispersion of suspected cases of cholera, we 

have seen the emergence of cholera cases 

was not associated with meteorological 

variables. The temporal evolution of 

epidemics was divided into three phases. 

Cholera risk map of each phase was 

performed. The high risk areas cholera 

phases 1, 2 and 3 were made for 4, 4 and 1 

clusters. 

The main environmental factors associated 

with risk of cholera were relief and habitat 

areas (urban/rural). 

Most of the data (rainfall, temperature, 

habitat area) were downloaded from the 

Internet. This could introduce a bias in the 

estimation of the model parameters. On the 

other hand, the low time horizon of cholera 

data were not allowed to properly analyse the 

dynamics of the evolution of the event in 

time and we thereby limits the scope of our 

assessment of the periodicity of cholera in 

Cameroon. 

The analysis of the first phase has spatial 

forms. The high-risk areas during this phase 

include the HD where compliance with 

health and safety rules are the least respected 

[1] as well as access to clean water [2]. The 

proximity to the sea and the low altitude of 

the Littoral region, especially the city of 

Douala, mainly exposes the people of these 

communities to waterborne diseases such as 

cholera [9]. 

Phase 2 is a residual phase and Phase 3 is the 

resurgence of the cholera epidemic in 

Cameroon which would be due to the 

movements of people fleeing the war in the 

neighbouring countries of Cameroon in 2014. 

No periodicity of cholera between 2011 and 

2014 has been founded. So it was not 

necessary to perform a cross analysis 

between the series of rains and the series of 

cholera cases to determine which series 

precedes the other. Moreover, several 

elements (the cholera situation in 
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neighbouring countries no case of 

confirmation in 2013, the origin of the 

epidemic of 2014, etc.) allowed to say that 

cholera is no longer endemic in Cameroon. 

This result, combined with the absence of 

spatial autocorrelation, justifies the fact that 

the reliefs trays and mountains contribute to 

increase the risk of cholera during phases 1 

and 2 [10]. Rural helped to reduce the risk of 

cholera in relation to urban areas in line in 

the income Gaudart et al. [11] Finally, the 

cholera risk is lower in sparsely populated 

HD.  

The analysis of spatio temporal spread of 

cholera in Cameroon between 2011 and 2014 

revealed spatial forms; a cholera risk map 

was developed for each phase of the 

outbreak; the outbreak shows no periodicity 

during the study period. Moreover, it has not 

been shown an association between the 

distribution of suspected cholera cases and 

meteorological factors. However, rural areas, 

low population density and high altitude in 

case of spatial aggregation reduce the risk of 

cholera. To prevent these outbreaks, the onus 

to improve sanitation, hygiene and safety in 

our cities, to develop tools and strategies to 

rapidly identify and manage suspected cases 

of cholera. 
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Abstract: 5 

The Analysis of Variance is by far the most used methods in ecology. However it application requires the fulfillment of data normality, variance 6 

homogeneity and a randomly selected samples. The permutation tests constitute the best alternative to the traditional Analysis of Variance 7 

(ANOVA) when this last fails in the fulfillment of parametrical assumptions. Three models were recorded by literature as the best permutation methods. 8 

These methods are based residuals reallocation under full, reduced and modified model. A part from the residuals reallocations, they share the same 9 

procedure of probability value computation. This probability value computation generally leads to the inflated behavior of test. The current paper 10 

addressed (1) the numerical implementation of exact probability computation and (2) the assessment of the relative performance of these three residuals 11 

permutation when exact probability was used. The objectives (1) and (2) were reached through Monte Carlo simulation study. A total of 198 simulations 12 

were run under the unique scenario of balanced and homoscedastic design. For each simulation 1000 datasets were generated and 999 t ime 13 

permutations were done on each dataset residual. The outcome of these simulations showed that, when the exact probability is used, the behavior of 14 

the residuals permutation tests changes. When residuals follow a lognormal distribution permutation of residuals under reduced model method gave best 15 

performance. When the residuals follow cubed exponential distribution, the use of permutation of residual under full model was recommended. The 16 

permutation of residuals under modified model revealed a conservative character and could be advice. 17 

Keywords: Permutation test, Analysis of Variance, Monte Carlo simulation, relative performance 18 

1-Introduction 19 

Inferential statistics aims at providing objects for decision-making based on probability or confidence intervals, researching optimal value and determining 20 

well fitted model. Hence, when one considers a dataset constituted by   samples (  ,           for a given factor  , it is hypothesized that these samples 21 

are from the same population  . In other words, the null hypothesis 22 
                                     

is tested. When    , the        (Gosset, 1908a and b) or the non parametric Mann–Whitney U test (Mann and Whitney, 1947) is used. When    , it is 23 

recommended to use a single factor Analysis of Variance (ANOVA) (Fisher, 1918) or the Kruskal Wallis test (1952) as non parametric counterpart. The 24 

use of these statistics requires some assumptions to be verified. For the parametric methods, the sample should be independently selected; the data must be 25 

normally distributed and the variances of the samples must be equal. The non parametric methods request samples to be independent and the same shape or 26 

form of data (Peres-Neto and Oldden, 2001). The violation of these conditions often leads to fake interpretations of outcomes, since outside of these 27 

assumptions there is no guarantee for accuracy (Glèlè Kakaï et al., 2006) which is exacerbate by the small sample size (Mundry and Fisher, 1998). 28 

However these assumptions are not generally met regarding of the extensive literature details (Edgington, 1987; LaFleur & Greevy, 2009; Anderson, 2003; 29 

Gaston & McArdle, 1994; Nanna & Sawilowsky, 1998). 30 

Most recently the use of free distribution methods such as permutation methods emerged as best alternative when assumptions are disregarded. They 31 

consist in rearranging data by shuffling their treatments labels, and then computing the statistics of interest. Their effectiveness results from the empirical 32 

generation of the null distribution. Actually, no assumption is made regarding the type of population from which the samples were drawn from, and the 33 

original data are used rather than their ranks (Manly, 1997 and Edgington, 1987). Additionally, permutation methods remain robust when outliers and 34 

missing data occur (LaFleur and Greevy, 2009). In ecology, permutation methods in linear model were used to assess the change of organism form 35 

according to the spatial aggregation degree and the time (McArdle and Anderson, 2004). Adam and Anthony (1996) used the Permutation on ANOVA 36 

(PANOVA) to assess first the territorial behavior of salamander species and second the time spent in burrows. In addition, Peres- Neto and Oldden (2001) 37 

for instance used it to assess whether foray rates (per hour) differ between fertile, incubating and nestling stages of hooded warblers.  38 

The decision is made using the probability computed as the proportion of statistics greater that the one observed (Pesarin, 2001; Kherad Pajouh, 2010). 39 

However it were demonstrated that the procedure is inflatedness and resulted in value equal to zero though a subset of zero distribution were used (Phipson 40 

and Smyth, 2010). These authors therefore proposed a computation of exact probability value to fix this problem. One can hypothesized that when exact 41 

probability is used different variance of permutation behavior will change. Nevertheless the literature lack to implement this exact probability and 42 

assessment of permutation methods is still overlooked when Phipson probability computation is used. This paper aims at implement the exact probability 43 

computation and compares the three robust permutation methods when the exact         is used under balanced homoscedastic design. 44 

 45 

(1) 
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2- Methods 46 

2.1- Simulation plan 47 

The codes were built in R software (R Development Core Team 2013). Monte Carlo simulations were used to investigate the essential empirical 48 

characteristics of the residuals permutation tests and to compare and contrast their sensitivity under the increasing sample size and residuals variance. The 49 

detail about the scenario conducted is showed in table 1. Under this unique scenario, 198 simulations were run. For each individual simulation, 1000 50 

datasets were used to generate the parameters alpha, power and effect size under known distribution parameters. For each simulated datasets, the test 51 

statistic and associated        were calculated for each permutation test using 999 random permutations. The significance level to reject the null hypothesis  52 

was set a priori at        in all cases, and the rejection rate of each test was calculated as the proportion of        (out of the 1000 simulated datasets) that 53 

were less than or equal to  . Additionally, to the type I error, the power of different permutation procedures was investigated regarding (a) the sample size 54 

(b) the residuals normality (c) the type of distribution.  55 

Table 1: Detailed outline of simulation scenarios conducted for the study 56 

Type of design Distribution Size variance 

Balanced Homoscedastic 

Normal      n={ 3,5,10,15,30,50} σ2={1,1.5,2,3,6 } 

Lognormal        n={3,5,10,15,30,50 } σ2={1,1.5,2,3,6 } 

Cubed Exponential       n={ 3,5,10,15,30,50} σ2={1} 

      
Standard Normal distribution is selected because it represents the ideal case of ANOVA’s residuals distribution. Manly (1997) stated that the Cubed 57 

Exponential distribution is used to simulate radically non normal error term. Furthermore it has been shown by Limpert et al. (2001) that most of biological 58 

data follow Log- Normal distribution.  59 

2.2- Type I error estimation 60 

The empirical probabilities of type I error (rejection rate) were studied for the three permutation methods considering  61 

(a) The sample size                      62 

(b) The distribution of random error ε = {standard normal (      ), Cubed exponential (     ), log-normal (        )} 63 

Residuals variances were simulated based on the empirical value of   as                 for every distribution                 (Hahn et al., 2013) were 64 

used to simulate increasing residuals variance according to sample size.  65 

The empirical type I error at 95% confidence interval was calculated for each dataset and for each of these three permutation methods.  66 

2.3. Statistical power 67 

The investigation of power (for a given sample size) was indexed uniquely by the measure of effect size proposed by Anderson and Ter Braak (2003): 68 

  

              
   

  
   

where    is a constant for any dataset of Monte Carlo simulation;        is the measure of effect size. The Cohen’s (1988) table were used with the 69 

effect size to detect the statistical power of each method with the R package “pwr” (Champely, 2015). These parameters help to establish the power curves 70 

for different error distributions used in simulations. 71 

In order to see whether there is a meaningful difference between alpha rates, a two way Analysis of Covariance considering the type of permutation 72 

methods, the type of distribution and the cofactor residuals variance were done. 73 

3-Results  74 

3.1- Effect of sample size on the performance of permutation of residuals method 75 

Simulation results (figure 1) showed that residuals permutation methods got more accurate (alpha reached its asymptotic value) when the sample size 76 

increased. When the sample size is very low 9 i.e. (3*3), the rejection rate ( ) is generally above the nominal rejection value of 0.05. Under Normal 77 

distribution, Ter Braak (1990, 1991) permutation model and Still and White (1981) methods get close to the nominal alpha rate of 0.05 when total sample 78 

size reaches 15 i.e. (3*5). However the residuals permutation under modified model of Kherad Pajouh and Renaud (2010) is conservative and stays at 0.01 79 

regardless of the sample size.  80 

When residuals follow Lognormal distribution, their permutation under reduced model (Still and White, 1981) gives rejection rate close to the nominal 81 

alpha, whereas their permutation under pooled model (Ter Braak, 1990) is lightly above the nominal value. The two test rejection rate comparison with t- 82 

test does not give a meaningful difference since p=0.325>0.05. The permutation of residuals under modified model stays conservative.  83 
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In the case of Cubed Exponential model of residuals, Ter Braak (1990) residuals permutation under pooled model gives a rejection rate close to 0.05. 84 

However, Still and White (1981) permutation of residuals under reduced model as well as Kherad Pajouh and Renaud (2010) model are more conservative. 85 

   

TB: Residuals permutation under pooled model of Ter Braak (1990); SW: Reduced model permutation method of Still and White (1981); KPR: Modified 86 

model residuals permutation method of Kherad Pajouh and Renaud (2010) 87 

Figure 1 : Empirical rejection rate for three different permutation methods 88 

3.2. Increasing residuals variance effect 89 

Results of two-way Analysis of Covariance (table 2) showed that there is a significant difference between different values of variances. Actually when the 90 

variance increases, the rejection rate of type one error also increases regardless the residuals permutation method considered (figure 2).  91 

Table 2 : Two ways Analysis of Covariance results 92 

 Df Sum Sq Mean Sq F value Pr (>F)  
Method 2 0.122 0.061 16.128 4.00E-07 *** 
Distri 2 0.010 0.005 1.359 2.60E-01  
Sd 4 0.008 0.012 6.395 2.39E-01 ** 
Method:Distri 4 0.024 0.006 1.586 1.80E-01  
Method:Sd 8 0.017 0.002 3.548 4.20E-02 ** 
Distri:Sd 4 0.009 0.267 4.588 4.71E-02 ** 
Method:Distri:Sd 8 0.016 0.006 1.541 8.24E-03 *** 
Residuals 165 0.624 0.004    

Method : permutation of residuals method used  (TB,SW and KPR) ; Distri : Type of distribution ; Sd : standard deviation 93 

 94 
KPR denotes permutation under modified model; SW is residual permutation under reduced model; TB is the permutation under pooled model; EC is the 95 

cubed exponential distribution; LN: Lognormal distribution; N: normal distribution, the value that follows different combination of method and distribution 96 

types represents residuals values  97 

Figure 2 : Box plots showing the trend of alpha rate for different methods with the increasing value of variance 98 

3.2- Power of tests 99 

The power curve presented (figure 3) gives typical trends of large effect size power curve (Thomas and Juanes, 1996). This indicates that there is not a 100 

significant difference in terms of group variance. Additionally, one can notice that the power of test whatever the distribution asymptotically converges to 1 101 

when sample size increases. When the total sample size of population reaches 30 individuals, the curve reaches stationary state. This indicates that the best 102 

performance for the permutation test is obtained when the total sample size reaches at least 30 individuals.  103 

 104 

 105 

 106 
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 108 
TB: Residuals permutation under pooled model of Ter Braak (1990); SW: Reduced model permutation method of Still and White (1981); KPR: Modified 109 

model residuals permutation method of Kherad Pajouh and Renaud (2010) 110 

Figure 3: Power curve of three permutation methods under increasing size of sample 111 
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Abstract: We developed a copula model for gene selection that does not depend
on the distributions of the covariates, except that their marginal distributions
are continuous. A comparison of the ability to control for the false discovery
rate(FDR) of the copula-based model with the Significance Analysis of Microar-
ray(SAM) and Bayesian models is performed via simulations. Simulations indi-
cated that the copula-based model do not have significant difference in estimating
the FDR except for sizes less than 100 genes. These results were validated in two
publicly-available melanoma datasets. Relaxing parametric assumptions on mi-
croarray data may yield gene signatures for melanoma with better prognostic
properties.

Keywords: False discovery rate; Gene expression; Microarray

1 Introduction

Melanoma of the skin is the fifth and seventh most commonly diagnosed
carcinoma in men and women, respectively (Sigel, 2006). A major challenge
with melanoma is the identification of therapeutic targets. Multi-gene sig-
natures have shown promise in this regard and a number of these signatures
have been developed within the last decade in this regard (Omolo 2013,
Mandruzzato 2006). Some of these signatures were obtained using the SAM
method. Other methods used include the Mann-Whitney test, the median
robust method, and methods based on the linear model (Omolo 2013). Ex-
cept for the Mann-Whitney test, all the methods used for these signatures
have been based on parametric assumptions about the distribution of the
covariates. A semiparametric (copula)model has previously been developed
for selecting prognostic genes for overall survival, while controlling for the
family-wise error rate (FWER).
In this study, we developed a copula model for selecting genes associ-
ated with a continuous but non-clinical outcome measured from cell lines.
The copula-based gene signature was compared with the SAM-based and
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2 Using copulas to select prognostic genes in melanoma patients

Bayesian model-based signatures for predictive accuracy of the continu-
ous outcome and prognosis for distance metastasis-free survival, while con-
trolling for the FDR (Benjamini 1995). Two publicly available melanoma
datasets were used in this regard.

Model formulation

Suppose a microarray experiment consists of n subjects/samples and G
genes. Let xi1, ..., xiG be the gene expression data for G genes from the
ith sample as xi1, ..., xiG and Y = y1, ..., yn be the covariate of interest
which is a quantitative trait. We aim to find genes that are correlated
with quantitative trait Y .In other words, we are interested in determining
whether Xg and Y are independent or not. The test for independence, thus,
becomes testing for null hypothesis H0g : Y ⊥ Xg vsH1g : Y 6⊥ Xg The
biological questions of differential gene expression in microarray consists of
multiple hypothesis testing problem in which several hypotheses are tested
simultaneously. In this case, the hypothesis of interest becomes

H0 : Y ⊥ Xg for all g =

G⋂

g=1

H0g (1)

vs.

H1 : Y ⊥ Xg for some g =

G⋂

g=1

H0g (2)

In terms of copula, assume that for each gene g, the joint distribution of Y
and Xg is generated by a parametric copula C(u1, u2; θg) such that

Hg(y, x) = C[F (y), Fg(x), θg] (3)

where F (.) is the marginal distribution function of Y and Xg and θg is the
dependence parameter between Y and Xg. Equation 1 and 2 now becomes

H0 :

G⋂

g=1

C(u1, u2, θg) = uv for all (u1, u2)T ∈ [0, 1]2, (4)

verses

H1 :

G⋃

g=1

C(u1, u2, θg) = uv for some (u1, u2)T ∈ [0, 1]2. (5)

We assumed that C is a normal copula. Normal copula attains indepen-
dence when θg = 0. Global null hypothesis H0 is rejected if and only if at
least 1 of its local null hypothesis H0i is rejected. We used the Canonical
maximum likelihood estimation method to estimate θ
A bivariate normal copula is expressed as
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C(u1u2) = Φθ(Φ
−1(u1),Φ−1(u2)) (6)

where

Φθ =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− θ2
exp

[
−x

2 − 2θxy + y2

2(1− θ2)

]
dxdy (7)

is the standardized bivariate normal distribution function with correlation
θ and

Φ(u1) =

∫ Φ−1(u)

−∞

1

2π
exp

[
−1

2
x2

]
dx (8)

denotes the univariate standardized distribution function. θ is a 2 by 2
correlation matrix.
The log-likelihood function becomes

`(θi) =
n∑

i=1

log (c(u1, u2)) (9)

The dependence parameter θi is then estimated as

θi = argmaxθ∈Θ`(θi) (10)

Where c(u1, u2) is the copula density.

Simulation and Application

Three simulation scenarios were considered for the gene expression data.
A multivariate standard normal was assumed for the expression data in
the first simulation. Gene expressions for 1,000 genes were simulated for
35 replication (samples). In the second simulation, a normal distribution
with mean -0.198 and a standard deviation of 1.490 calculated from a real
melanoma gene expression data was assumed. 1000 genes were simulated
for 35 replications (samples). The third simulation set-up was the same as
the second one but with a higher number of simulated genes (5000). Quan-
titative outcome (G2 checkpoint function) was randomly generated from a
beta distribution, Beta (2, 5). 35 G2 checkpoint functions were simulated.
The results reveled that the three methods do not differ significantly in
the estimation of the FDR for a sizable number of genelist Refer to table
1). Copula perform as good as the existing methods. Application was con-
ducted on two real melanoma datasets and the results shows that the three
methods identified good number of differentially expressed genes. Refer to
table 2. We further analysed the genelists generated by the three methods
for survival risk prediction to separate the samples into high-risk or low-risk
based on their overall survival times using two independent datasets. The
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4 Using copulas to select prognostic genes in melanoma patients

TABLE 1. Estimated FDR for the top 10, 100, 200 and 500 genes obtained by
the three methods for differential expression analysis

1st Simulation 2nd Simulation 3rd Simulation
Gene list SAM Bayes Copula SAM Bayes Copula SAM Bayes Copula

Top 10 0.319 0.773 0.978 0.625 0.661 0.627 0.648 0.998 0.994
Top 100 0.804 0.96 0.978 0.8 0.885 0.903 0.931 0.998 0.994
Top 200 0.86 0.961 0.978 0.859 0.903 0.903 0.974 0.998 0.994

Top 500 0.92 0.961 0.978 0.94 0.923 0.967 0.974 0.998 0.994

TABLE 2. Estimated FDR for the top 10, 100, 200 and 500 genes obtained by
the three methods for differential expression analysis

35 melanoma samples 22 melanoma samples

Gene list SAM Bayes Copula SAM Bayes Copula
Top 10 0.1751 0.2103 0.000 0.000 0.1515 0.000
Top 100 0.1751 0.2162 0.000 0.0764 0.213 0.2059

Top 200 0.2067 0.2347 0.0791 0.1053 0.2535 0.2862
Top 500 0.2067 0.2707 0.2113 0.204 0.2905 0.3405

separation of the two groups, high or low- risk was good for the three meth-
ods on one of the datasets. However, genelist generated by Copula method
were prognostic for the two independent data sets used. Prognosis results
were based on the Area Under Curve (AUC) values. We therefore conclude
that relaxing parametric assumptions on microarray data may yield gene
signatures for melanoma with better prognostic properties

Acknowledgments: Dr. William K. Kaufmann for the continuous and
survival outcome data,Simons Foundation and African Union
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Most statistical studies involving data collecting (random phenomenon modelling, experiment 
planning, opinion poll, transportation, road safety, etc) not only bring out the problems of 
statistical patterns but also the problems of parameter estimation (looking for optimal 
solutions) and those related to the evaluation of the accuracy of the those estimations. The 
main motivation of this contribution is to talk about the methods used to combine road 
accident frequencies before and after a similar change at a given number of sites.  
So we consider that a road safety measure (crossroad lay-out, surface of a motorway section, 
etc.) is simultaneously applied to several sites (experimental sites), each site presenting 
several mutually exclusive types of accidents (fatal accidents, seriously injured people, 
slightly injured people, material damage, etc.).  
 
We also consider that to each experimental site a control area is associated, with the same 
accident types, but where the measure is not directly applied. The control areas are used not 
only as comparison sites but also and mainly enable us to take into account the impact of 
some factors (as traffic-flow and speed variations before and after the applied measure, 
weather conditions, experimental sites location, etc.) on the applied measure effect. We 
therefore have to include the impact of these factors the statistical models used to analyse the 
measure mean effect if we want to interpret correctly the scope of this measure at the 
experimental sites.  
 
The statistical models used in the analysis of a road safety measure efficiency heavily depend 
on the data and on the target set along with the measure. According to some points of view 
and some practices in the field of road safety, it is advisable to model the accident data 
according to Poisson distribution, conditional or truncated Poisson distribution, negative 
binomial distribution. Even if Poisson model or conditional Poisson is a common and 
convenient assumption in crash accident count analysis, are accidents Poisson distributed? It 
is very important to evaluate this Poisson assumption in practice using statistical tests. The 
question is which approach and assumption give the better results and under what conditions.  
 
In the following we consider a multidimentional combination of road accident frequencies 
before and after the introduction of a road safety measure at different experimental sites with 
a control site for each of them. Each experimental site counts several mutually exclusive types 
of accidents over a two fixed periods (before and after) of time. Different multinomial 
distributions are proposed to model the total accident number in each experimental site. At 

156 sciencesconf.org:sada2016:119025



 2

any one target site it is assumed that the total number of accidents recorded is multinomially 
distributed between the before period and the after period and also between several mutually 
exclusive types. The parameter of the distribution depends on the different accident risks in 
the control area linked to each site as well as on the average effect of the change.  
 
Most estimations methods involve the optimization of a function such as a likelihood or a sum 
of squares. Maximum likelihood (ML) or Expectation Maximization (EM) algorithms are the 
most useful algorithms for ML estimation because they consistently drive the likelihood 
uphill by maximizing a simple surrogate function for the log-likelihood. In this article and for 
the multinomial statistical modeling of a road safety measure, we propose an algorithm call 
Cyclic Algorithm (CA). In fact, using the Schur complement of a matrix, we propose a 
computational framework for performing constrained ML estimation. CA algorithm cycles 
through the components of the vector parameter and updates one component at a time, which 
loads to closed form solutions of the parameters. It is simple to implement without any 
inversion matrix. An explicit form for the solution is given. The overall algorithm is shown in 
numerical studies to be faster than standard methods that either compute or approximate the 
Hessian. We apply our approach to a motivating problem of evaluating the effectiveness of 
Road Safety Policies. The numerical convergence properties and the strong consistency of the 
constrained ML estimator of the models have been studied. We then make up those results by 
showing the strong consistency of the constrained ML estimator of the models. This includes 
several numerical studies on simulated data.  
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Diongue Abdou Ka, 65–68
Diop Aliou, 23–26, 52–64
Diouf Saliou, 52–64
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